Secure Lossy Source Coding with Side Information at the Decoders

Joffrey Villard and Pablo Piantanida

SUPELEC, Telecom. Dpt., Gif-sur-Yvette, France.

Email: {joffrey.villard, pablo.piantanida}@supelec.fr

Allerton 2010

イロト 不得 トイヨト 不良 とう

Secure Lossy Source Coding with SI at the Decoders

Introduction

Allerton 2010

Secure Lossy Source Coding with SI at the Decoders

Introduction

Tradeoff: Min. R + Min. D + Max. Δ

Allerton 2010

Secure Lossy Source Coding with SI at the Decoders

Introduction

Secure Lossy Source Coding with SI at the Decoders

네트 소리가 소리가 소리가 소리가

References

Source coding with side-information.

D. Slepian and J. Wolf. Noiseless coding of correlated information sources. IEEE Trans. IT, 19(4):471-480, 1973.

A.D. Wyner and J. Ziv. The rate-distortion function for source coding with side information at the decoder. *IEEE Trans. IT*, 22(1):1–10, 1976.

Information-theoretic secrecy/security.

C.E. Shannon. Communication theory of secrecy systems. BSTJ, 28:656-715, 1949.

A.D. Wyner. The wire-tap channel. BSTJ, 54(8):1355-1387, 1975.

I. Csiszar and J. Korner. Broadcast channels with confidential messages. IEEE Trans. IT, 24(3):339-348, 1978.

Y. Liang, H.V. Poor, and S. Shamai. Information theoretic security. Now Publishers, 2009.

R. Liu and W. Trappe. Securing wireless communications at the physical layer. Springer, 2010.

Secure source coding.

H. Yamamoto. Rate-distortion theory for the Shannon cipher system. IEEE Trans. IT, 43(3):827-835, 1997.

V. Prabhakaran and K. Ramchandran. On secure distributed source coding. In Proc. ITW, p. 442-447, 2007.

D. Gunduz, E. Erkip, and H.V. Poor. Lossless compression with security constraints. In Proc. ISIT, p. 111–115, 2008.

R. Tandon, S. Ulukus, and K. Ramchandran. Secure source coding with a helper. In *Proc. Allerton*, p. 1061–1068, 2009.

N. Merhav. Shannon's secrecy system with informed receivers and its application to systematic coding for wiretapped channels. *IEEE Trans. IT*, 54(6):2723–2734, 2008.

Allerton 2010

Secure Lossy Source Coding with SI at the Decoders

Outline

- 2 Special Cases of Interest
 - Lossless Secure Source Coding
 - Bob Has Less Noisy SI Than Eve
- 3 Sketch of the Proof
 - Achievability
 - Converse
- 4 Application Example

《曰》《圖》《曰》《曰》 되는

Definitions

 \blacksquare \mathcal{A}, \mathcal{B} and \mathcal{E} : three finite sets

■ $(A_i, B_i, E_i)_{i \ge 1}$: i.i.d random variables on $\mathcal{A} \times \mathcal{B} \times \mathcal{E}$ with known joint distribution p(a, b, e)

■ $d : A \times A \rightarrow [0; d_{max}]$: a finite distortion measure

An (n, R)-code for source coding in this setup is defined by

- An encoding function at Alice $f : \mathcal{A}^n \to \{1, \dots, 2^{nR}\}$
- A decoding function at Bob $g: \{1, \ldots, 2^{nR}\} \times \mathcal{B}^n \to \mathcal{A}^n$

Definitions (cont.)

A tuple $(R, D, \Delta) \in \mathbb{R}^3_+$ is achievable if, for any $\varepsilon > 0$, there exists an $(n, R + \varepsilon)$ -code (f, g) such that:

$$\mathbb{E}\left[d(A^n, g(f(A^n), B^n))\right] \leq D + \varepsilon$$
$$\frac{1}{n} H(A^n | f(A^n), E^n) \geq \Delta - \varepsilon$$

イロト 不得 トイヨト 不良 とう

Main Result

Theorem (Rate-Distortion-Equivocation Region) (R, D, Δ) is achievablei.f.f.there existsets \mathcal{U}, \mathcal{V} $r.v. U \text{ on } \mathcal{U}, V \text{ on } \mathcal{V}$ a function $\hat{A}: \mathcal{V} \times \mathcal{B} \rightarrow \mathcal{A}$

such that U - V - A - (B, E) form a Markov chain

$$R \geq I(V;A|B)$$

$$D \geq \mathbb{E}[d(A, \hat{A}(V, B))]$$

$$\Delta \leq [H(A|VB) + I(A;B|U) - I(A;E|U)]_{+}$$

네트 소리가 소리가 소리가 소리가

Main Result

Theorem (Rate-Distortion-Equivocation Region) (R, D, Δ) is achievablei.f.f.there exist

■ sets \mathcal{U}, \mathcal{V} $\|\mathcal{U}\| \le \|\mathcal{A}\| + 2, \|\mathcal{V}\| \le (\|\mathcal{A}\| + 2)(\|\mathcal{A}\| + 1)$ •

$$\blacksquare r.v. U on \mathcal{U}, V on \mathcal{V}$$

• a function $\hat{A} : \mathcal{V} \times \mathcal{B} \to \mathcal{A}$

such that U - V - A - (B, E) form a Markov chain

$$R \geq I(V;A|B)$$

$$D \geq \mathbb{E}[d(A, \hat{A}(V, B))]$$

$$\Delta \leq \left[H(A|VB) + I(A;B|U) - I(A;E|U) \right]$$

Outline

Definitions and Main Result

Special Cases of Interest
 Lossless Secure Source Coding
 Bob Has Less Noisy SI Than Eve

3 Sketch of the Proof

- Achievability
- Converse

4 Application Example

Secure Lossy Source Coding with SI at the Decoders

Lossless Secure Source Coding (D = 0)

Corollary (Prabhakaran2007,Gunduz2008) $(R, 0, \Delta)$ is achievable i.f.f. there exist a set \mathcal{U} a r.v. U on \mathcal{U} such that U - A - (B, E) form a Markov chain $R \ge H(A|B)$ $\Delta \le \left[I(A; B|U) - I(A; E|U)\right]_{+}$

Set V = A in the main theorem

イロン 人間 とくほ とくほう ほぼう ろくつ

Outline

Definitions and Main Result

2 Special Cases of Interest

Lossless Secure Source Coding

Bob Has Less Noisy SI Than Eve

3 Sketch of the Proof

- Achievability
- Converse

4 Application Example

Secure Lossy Source Coding with SI at the Decoders

B is Less Noisy Than *E*

Assumption $I(U;B) \ge I(U;E)$ for each r.v. U s.t. U - A - (B,E) form a MC

Secure Lossy Source Coding with SI at the Decoders

イロン 人間 とくほ とくほう ほぼう ろくつ

B is Less Noisy Than *E*

Assumption $I(U;B) \ge I(U;E)$ for each r.v. U s.t. U - A - (B,E) form a MC Corollary (R, D, Δ) is achievable *i.f.f.* there exist a r.v. V on some set V • a function $\hat{A} : \mathcal{V} \times \mathcal{B} \to \mathcal{A}$ such that V - A - (B, E) form a Markov chain $R \geq I(V;A|B)$ $D \geq \mathbb{E}[d(A, \hat{A}(V, B))]$ $\Delta \leq \left[H(A|VB) + I(A;B) - I(A;E) \right]_{+}$

B is Less Noisy Than E

Corollary (R, D, Δ) is achievable *i.f.f.* there exist a r.v. V on some set V • a function $\hat{A}: \mathcal{V} \times \mathcal{B} \to \mathcal{A}$ such that V - A - (B, E) form a Markov chain $R \geq I(V;A|B)$ $D \geq \mathbb{E}[d(A, \hat{A}(V, B))]$ $\Delta \leq \left[H(A|VB) + I(A;B) - I(A;E) \right]_{\perp}$

- Set U = cst in the main theorem
- Wyner-Ziv coding achieves the optimal performance

Achievability

Outline

Special Cases of Interest
 Lossless Secure Source Coding
 Bob Has Less Noisy SI Than Eve

Sketch of the Proof Achievability

Converse

4 Application Example

Secure Lossy Source Coding with SI at the Decoders

$$U - V - A - (B, E)$$
 form a Markov chain

1 a simple binning operation to transmit
$$U$$
 (message r_1)

 $R_1 > I(U;A|B)$

2 a Wyner–Ziv coding to transmit A with SI (U, B) at Bob (message r₂)

 $R_2 > I(V; A | UB)$

 \Rightarrow Sufficient condition:

 $R_1 + R_2 > I(V;A|B)$

Allerton 2010

Secure Lossy Source Coding with SI at the Decoders

▲□▶ ▲□▶ ▲目▶ ▲目▶ ④�?

Achievability

Distortion at Bob

Bob can decode U^n and V^n from message (r_1, r_2) and SI B^n

$$\mathbb{E}\left[d(A^n, g(f(A^n), B^n))\right] \approx \frac{1}{n} \sum_{i=1}^n \mathbb{E}\left[d(A_i, g_i(V^n, B^n))\right]$$
$$= \frac{1}{n} \sum_{i=1}^n \mathbb{E}\left[d(A_i, \hat{A}(V_i, B_i))\right]$$
$$= \mathbb{E}\left[d(A, \hat{A}(V, B))\right]$$

Sufficient condition:

$$D \geq \mathbb{E}[d(A, \hat{A}(V, B))]$$

Allerton 2010

Secure Lossy Source Coding with SI at the Decoders

◆□ ▶ ◆帰 ▶ ◆ ∃ ▶ ◆ ∃ ► ● 目目 ◆ ○ ○ ○

Equivocation Rate at Eve

Eve receives messsage (r_1, r_2) and SI E^n

$$\frac{1}{n} H(A^{n} | f(A^{n}) E^{n}) = \frac{1}{n} H(A^{n} | r_{1} r_{2} E^{n})$$

$$= \frac{1}{n} \Big[H(A^{n}) - I(A^{n}; r_{1} E^{n}) - I(A^{n}; r_{2} | r_{1} E^{n}) \Big]$$

$$I(\cdot; \cdot | \cdot) \le H(\cdot | \cdot) \le H(\cdot) \Big\} \ge \frac{1}{n} \Big[H(A^{n}) - I(A^{n}; U^{n} E^{n}) - H(r_{2}) \Big]$$
i.i.d. r.v., $r_{2} \in \{1, ..., 2^{nR_{2}}\} \ge H(A | UE) - R_{2}$

Sufficient condition:

$$\Delta \leq \left[H(A|UE) - R_2 \right]_+$$

Allerton 2010

Secure Lossy Source Coding with SI at the Decoders

◆□ ▶ ◆帰 ▶ ◆ ∃ ▶ ◆ ∃ ► ● 目目 ◆ ○ ○ ○

Main Result

Theorem (Rate-Distortion-Equivocation Region) (R, D, Δ) is achievable (\leftarrow) there exist sets U. V \blacksquare r.v. U on \mathcal{U} , V on \mathcal{V} • a function $\hat{A}: \mathcal{V} \times \mathcal{B} \to \mathcal{A}$ such that U - V - A - (B, E) form a Markov chain $R \geq I(V;A|B)$ $D \geq \mathbb{E}[d(A, \hat{A}(V, B))]$ $\Delta \leq \left[H(A|VB) + I(A;B|U) - I(A;E|U) \right]_{+}$

◆□ ▶ ◆帰 ▶ ◆ ∃ ▶ ◆ ∃ ► ● 目目 ◆ ○ ○ ○

Converse

Outline

- Lossless Secure Source Coding Bob Has Less Noisy SI Than Eve
- 3 Sketch of the Proof
 - Achievability
 - Converse

Secure Lossy Source Coding with SI at the Decoders

Converse

Definitions

- An achievable tuple: (R, D, Δ)
- Transmitted message: $W = f(A^n)$

Auxiliary random variables:

$$U_i = (W, B_{i+1}^n, E^{i-1})$$

$$V_i = (W, A^{i-1}, B^{i-1}, B_{i+1}^n, E^{i-1})$$

 \blacksquare $U_i - V_i - A_i - (B_i, E_i)$ form a Markov chain

Allerton 2010

Secure Lossy Source Coding with SI at the Decoders

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回■ のへの

$$\begin{split} nR &\geq H(W) \\ &= I(W; A^n B^n E^n) \\ &\geq I(W; A^n E^n | B^n) \\ \left\{ \text{chain rule} \right\} &= \sum_{i=1}^n I(W; A_i E_i | A^{i-1} B^n E^{i-1}) \\ &= \sum_{i=1}^n I(WA^{i-1} B^{i-1} B^n_{i+1} E^{i-1}; A_i E_i | B_i) \\ &- I(A^{i-1} B^{i-1} B^n_{i+1} E^{i-1}; A_i E_i | B_i) \\ \left\{ \text{indep. across time} \right\} &\geq \sum_{i=1}^n I(V_i; A_i | B_i) \end{split}$$

Secure Lossy Source Coding with SI at the Decoders

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Distortion at Bob

Bob reconstructs $g(W, B^n)$

$$\blacksquare V_i = (W, A^{i-1}, B^{i-1}, B^n_{i+1}, E^{i-1})$$

$$\hat{A}_i(V_i, B_i) \triangleq g_i(W, B^{i-1}, B_i, B^n_{i+1})$$

Secure Lossy Source Coding with SI at the Decoders

Converse

Distortion at Bob

Bob reconstructs $g(W, B^n)$

$$V_i = (W, A^{i-1}, B^{i-1}, B^n_{i+1}, E^{i-1})$$

$$\hat{A}_i(V_i, B_i) \triangleq g_i(W, B^{i-1}, B_i, B^n_{i+1})$$

Component-wise mean distortion:

$$\mathbb{E}\Big[d(A^n, g(f(A^n), B^n))\Big] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}\Big[d(A_i, \hat{A}_i(V_i, B_i))\Big]$$

$$\leq D$$

Equivocation Rate at Eve

$$H(A^n|WE^n) = H(A^n|W) - I(A^n;E^n|W)$$

 $\{W - A^n - (B^n, E^n)\} = H(A^n | WB^n) + I(A^n; B^n) - I(W; B^n) - I(A^n; E^n) + I(W; E^n)$

$$\{\text{chain rule}\} = \sum_{i=1}^{n} H(A_i | W\!A^{i-1}B^n) + I(A_i; B_i) - I(A_i; E_i) - I(W\!B_{i+1}^n; B_i) + I(W\!E^{i-1}; E_i) \}$$

$$\{\text{Csiszar-Körner}\} = \sum_{i=1}^{n} H(A_i | W\!A^{i-1}B_{i-1}B_iB_{i+1}^n E^{i-1}) + I(A_i; B_i) - I(A_i; E_i) + I(E_i; W\!B_{i+1}^n E^{i-1}) - I(B_i; W\!B_{i+1}^n E^{i-1}) \}$$

$$\left\{U_i - A_i - (B_i, E_i)\right\} = \sum_{i=1}^n H(A_i | V_i B_i) + I(A_i; B_i | U_i) - I(A_i; E_i | U_i)$$

Allerton 2010

Secure Lossy Source Coding with SI at the Decoders

Main Result

Outline

- 2 Special Cases of Interest
 - Lossless Secure Source Coding
 - Bob Has Less Noisy SI Than Eve
- 3 Sketch of the Proof
 - Achievability
 - Converse
- 4 Application Example

Secure Lossy Source Coding with SI at the Decoders

Secure Lossy Source Coding with SI at the Decoders

イロト 不得 トイヨト イヨト

Neither Bob nor Eve is a lessnoisy decoder for all values of (p, ε) :

Secure Lossy Source Coding with SI at the Decoders

< ロ > < 同 > < E > < E > E = < 0 < 0</p>

Neither Bob nor Eve is a lessnoisy decoder for all values of (p, ε) :

Secure Lossy Source Coding with SI at the Decoders

- distortion *d*: Hamming distance
- source A: uniformly distributed

Secure Lossy Source Coding with SI at the Decoders

Main Result

Theorem (Rate-Distortion-Equivocation Region) (R, D, Δ) is achievablei.f.f.there exist

- sets \mathcal{U}, \mathcal{V} $\|\mathcal{U}\| \le \|\mathcal{A}\| + 2, \|\mathcal{V}\| \le (\|\mathcal{A}\| + 2)(\|\mathcal{A}\| + 1)$
- $\blacksquare r.v. U on U, V on V$
- a function $\hat{A} : \mathcal{V} \times \mathcal{B} \to \mathcal{A}$

such that U - V - A - (B, E) form a Markov chain

$$R \geq I(V;A|B)$$

$$D \geq \mathbb{E}[d(A, \hat{A}(V, B))]$$

$$\Delta \leq \left[H(A|VB) + I(A;B|U) - I(A;E|U) \right]$$

Main Result

Theorem (Rate-Distortion-Equivocation Region) (R, D, Δ) is achievablei.f.f.there exist

- $\blacksquare r.v. U on \mathcal{U}, V on \mathcal{V}$
- a function $\hat{A} : \mathcal{V} \times \mathcal{B} \rightarrow \mathcal{A}$

such that U - V - A - (B, E) form a Markov chain

$$R \geq I(V;A|B)$$

$$D \geq \mathbb{E}[d(A,\hat{A}(V,B))]$$

$$\Delta \leq [H(A|VB) + I(A;B|U) - I(A;E|U)]$$

Rate-Distortion-Equivocation Region

Proposition (R, D, Δ) is achievable *i.f.f.* there exist $\alpha, \beta \in [0, 1/2]$ such that $R \geq \varepsilon (1 - h_2(\alpha)),$ $D \geq \varepsilon \alpha,$ $\Delta \leq [\varepsilon h_2(\alpha) + (1 - \varepsilon) h_2(\alpha \star \beta) - h_2(p \star \alpha \star \beta) + h_2(p)]_+.$

■
$$a \star b = a(1-b) + (1-a)b$$

■ $h_2(x) = -x \log_2(x) - (1-x) \log_2(1-x)$

Allerton 2010

Secure Lossy Source Coding with SI at the Decoders

Rate-Distortion-Equivocation Region

Proposition

 (R, D, Δ) is achievable *i.f.f.*

there exist $\alpha, \beta \in [0, 1/2]$ such that

$$\begin{array}{ll} R & \geq & \varepsilon \left(1 - h_2(\alpha) \right) \,, \\ D & \geq & \varepsilon \,\alpha \,, \\ \Delta & \leq & \left[\varepsilon \, h_2(\alpha) + (1 - \varepsilon) \, h_2(\alpha \star \beta) - h_2(p \star \alpha \star \beta) + h_2(p) \right]_+ \end{array}$$

Illustration

Equivocation rate at Eve Δ as a function of the distortion at Bob D

Secure Lossy Source Coding with SI at the Decoders

Summary and Discussion

 Complete single-letter characterization of the rate-distortion-equivocation region

Binary sources with BEC and BSC Side Informations

Future work:

- Vector Gaussian sources and side informations
- Rate-distortion-distortion region

イロト イポト イモト イモト モ

Thank you for your attention.

<ロ> < 団> < 団> < 三> < 三> < 三</p>

Allerton 2010

Secure Lossy Source Coding with SI at the Decoders

29 / 29

Outline

5 Appendix

- Eve Has Less Noisy SI Than Bob
- Proof of Achievability
- Proof of Converse
- Cardinality Bounds

Secure Lossy Source Coding with SI at the Decoders

E is Less Noisy Than B

Corollary (R, D, Δ) is achievable *i.f.f.* there exist a r.v. V on some set V **a** function $\hat{A} : \mathcal{V} \times \mathcal{B} \to \mathcal{A}$ such that V - A - (B, E) form a Markov chain $R \geq I(V;A|B)$ $D \geq \mathbb{E}[d(A, \hat{A}(V, B))]$ $\Delta \leq H(A|VE)$

Allerton 2010

Secure Lossy Source Coding with SI at the Decoders

E is Less Noisy Than B

Corollary (R, D, Δ) is achievable *i.f.f.* there exist a r.v. V on some set V • a function $\hat{A} : \mathcal{V} \times \mathcal{B} \to \mathcal{A}$ such that V - A - (B, E) form a Markov chain $R \geq I(V;A|B)$ $D \geq \mathbb{E}[d(A, \hat{A}(V, B))]$ $\Delta \leq H(A|VE)$

Set U = V in the main theorem

Wyner-Ziv coding achieves the optimal performance

Outline

5 Appendix

- Eve Has Less Noisy SI Than Bob
- Proof of Achievability
- Proof of Converse
- Cardinality Bounds

Secure Lossy Source Coding with SI at the Decoders

Codebook generation

- **1** a simple binning operation to transmit U
- 2 a Wyner–Ziv coding to transmit A with SI (U, B) at Bob

Secure Lossy Source Coding with SI at the Decoders

イロン 不良 とくほう 不良 とうほ

Codebook generation

- **1** a simple binning operation to transmit U
- 2 a Wyner–Ziv coding to transmit A with SI (U, B) at Bob
 - randomly pick 2^{nS_1} sequences $u^n(s_1)$ from $T^n_{\epsilon}(U)$
 - divide them into 2^{nR_1} equal-size bins $\{B_1(r_1)\}_{r_1 \in \{1, \dots, 2^{nR_1}\}}$

Then, for each codeword $u^n(s_1)$,

- randomly pick 2^{nS_2} sequences $v^n(s_1, s_2)$ from $T^n_{\epsilon}(V|u^n(s_1))$
- divide them into 2^{nR_2} equal-size bins $\{B_2(s_1, r_2)\}_{r_2 \in \{1, \dots, 2^{nR_2}\}}$

Encoding

- a simple binning operation to transmit U
- 2 a Wyner–Ziv coding to transmit A with SI (U, B) at Bob

Sequence A^n is produced at Alice

- look for a codeword $u^n(s_1)$ s.t. $(u^n(s_1), A^n) \in T^n_{\epsilon}(U, A)$
- \rightarrow bin $B_1(r_1)$
- look for a codeword $v^n(s_1, s_2)$ s.t. $(v^n(s_2), A^n) \in T^n_{\epsilon}(V, A | u^n(s_1))$
- \rightarrow bin $B_2(s_1, r_2)$
 - send the message $f(A^n) \triangleq (r_1, r_2)$

Proof of Achievability

Encoding

- 1 a simple binning operation to transmit U
- 2 a Wyner–Ziv coding to transmit A with SI (U, B) at Bob

Sequence A^n is produced at Alice

- look for a codeword $u^n(s_1)$ s.t. $(u^n(s_1), A^n) \in T^n_{\epsilon}(U, A)$
- \rightarrow bin $B_1(r_1)$

$$S_1 > I(U;A)$$

look for a codeword $v^n(s_1, s_2)$ s.t. $(v^n(s_2), A^n) \in T^n_{\epsilon}(V, A | u^n(s_1))$

 \rightarrow bin $B_2(s_1, r_2)$ $S_2 > I(V; A|U)$

send the message $f(A^n) \triangleq (r_1, r_2)$

Proof of Achievability

Decoding

a simple binning operation to transmit U
 a Wyner–Ziv coding to transmit A with SI (U, B) at Bob

Bob receives (r_1, r_2) from Alice and his SI sequence B^n

look for the unique codeword $u^n(s_1) \in B_1(r_1)$ s.t.

 $(u^n(s_1), B^n) \in T^n_{\epsilon}(U, B)$

■ look for the unique codeword $v^n(s_1, s_2) \in B_2(s_1, r_2)$ s.t. $(v^n(s_1, s_2), B^n) \in T^n_{\epsilon}(V, B|u^n(s_1))$

Secure Lossy Source Coding with SI at the Decoders

Proof of Achievability

Decoding

a simple binning operation to transmit U
 a Wyner–Ziv coding to transmit A with SI (U, B) at Bob

Bob receives (r_1, r_2) from Alice and his SI sequence B^n

look for the unique codeword $u^n(s_1) \in B_1(r_1)$ s.t.

 $(u^n(s_1), B^n) \in T^n_{\epsilon}(U, B) \qquad \qquad S_1 - R_1 < I(U; B)$

■ look for the unique codeword $v^n(s_1, s_2) \in B_2(s_1, r_2)$ s.t. $(v^n(s_1, s_2), B^n) \in T^n_{\epsilon}(V, B|u^n(s_1))$ $S_2 - R_2 < I(V; B|U)$

Secure Lossy Source Coding with SI at the Decoders

Markov Chain
$$U - V - A - (B, E)$$

Encoding and decoding constraints:

$$S_1 > I(U;A)$$

 $S_2 > I(V;A|U)$
 $S_1 - R_1 < I(U;B)$
 $S_2 - R_2 < I(V;B|U)$

Allerton 2010

Secure Lossy Source Coding with SI at the Decoders

<ロ> < 団> < 団> < 三> < 三> < 三</p>

Markov Chain U - V - A - (B, E)

Encoding and decoding constraints:

 $R_1 > I(U;A|B)$ $R_2 > I(V;A|UB)$

Allerton 2010

Secure Lossy Source Coding with SI at the Decoders

Markov Chain U - V - A - (B, E)

Encoding and decoding constraints:

 $R_1 > I(U;A|B)$ $R_2 > I(V;A|UB)$

Sufficient condition:

 $R_1 + R_2 > I(V;A|B)$

Return

イロン 人間 とくほ とくほう ほぼう ろくつ

Allerton 2010

Secure Lossy Source Coding with SI at the Decoders

Proof of Converse

Outline

5 Appendix

- Eve Has Less Noisy SI Than Bob
- Proof of Achievability

Proof of Converse

Cardinality Bounds

Secure Lossy Source Coding with SI at the Decoders

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition of New Random Variables

$$R \geq \frac{1}{n} \sum_{i=1}^{n} I(\mathbf{V}_{i}; A_{i} | B_{i})$$

$$D \geq \frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \Big[d(A_{i}, \hat{A}_{i}(\mathbf{V}_{i}, B_{i})) \Big]$$

$$\Delta \leq \frac{1}{n} \sum_{i=1}^{n} H(A_{i} | \mathbf{V}_{i} B_{i}) + I(A_{i}; B_{i} | \mathbf{U}_{i}) - I(A_{i}; E_{i} | \mathbf{U}_{i})$$

Secure Lossy Source Coding with SI at the Decoders

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition of New Random Variables

$$R \geq \frac{1}{n} \sum_{i=1}^{n} I(\mathbf{V}_{i}; A_{i} | B_{i})$$

$$D \geq \frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \Big[d(A_{i}, \hat{A}_{i}(\mathbf{V}_{i}, B_{i})) \Big]$$

$$\Delta \leq \frac{1}{n} \sum_{i=1}^{n} H(A_{i} | \mathbf{V}_{i} B_{i}) + I(A_{i}; B_{i} | \mathbf{U}_{i}) - I(A_{i}; E_{i} | \mathbf{U}_{i})$$

Define:

an independent r.v. Q unif. distributed over $\{1, \ldots, n\}$

$$\blacksquare A = A_Q, \quad B = B_Q, \quad E = E_Q, \quad U = (Q, U_Q), \quad V = (Q, V_Q)$$

Secure Lossy Source Coding with SI at the Decoders

Definition of New Random Variables

$$R \geq \frac{1}{n} \sum_{i=1}^{n} I(\mathbf{V}_{i}; A_{i} | B_{i})$$

$$D \geq \frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \Big[d(A_{i}, \hat{A}_{i}(\mathbf{V}_{i}, B_{i})) \Big]$$

$$\Delta \leq \frac{1}{n} \sum_{i=1}^{n} H(A_{i} | \mathbf{V}_{i} B_{i}) + I(A_{i}; B_{i} | \mathbf{U}_{i}) - I(A_{i}; E_{i} | \mathbf{U}_{i})$$

Define:

an independent r.v. Q unif. distributed over $\{1, \ldots, n\}$

$$A = A_Q, \quad B = B_Q, \quad E = E_Q, \quad U = (Q, U_Q), \quad V = (Q, V_Q)$$

Then:

$$U - V - A - (B, E)$$
 form a Markov chain

 $(A, B, E) \sim p(a, b, e)$

Appendix

$$R \geq \frac{1}{n} \sum_{i=1}^{n} I(V_i; A_i | B_i)$$

$$= \frac{1}{n} \sum_{i=1}^{n} I(V_Q; A_Q | B_Q, Q = i)$$

$$= I(V_Q; A_Q | B_Q, Q)$$

$$= I(QV_Q; A_Q | B_Q)$$

= I(V;A|B)

Allerton 2010

Secure Lossy Source Coding with SI at the Decoders

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ >

Distortion at Bob

$$D \geq \frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \Big[d(A_i, \hat{A}_i(V_i, B_i)) \Big]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \Big[d(A_Q, \hat{A}_Q(V_Q, B_Q)) \mid Q = i \Big]$$

$$= \mathbb{E} \Big[d(A_Q, \hat{A}_Q(V_Q, B_Q)) \Big]$$

$$= \mathbb{E} \Big[d(A, \hat{A}(V, B)) \Big]$$

where

$$\hat{A}(V,B) = \hat{A}(Q,V_Q,B_Q) \triangleq \hat{A}_Q(V_Q,B_Q)$$

Secure Lossy Source Coding with SI at the Decoders

<ロ> < 団> < 団> < 三> < 三> < 三</p>

Equivocation Level at Eve

$$\Delta \leq \frac{1}{n} \sum_{i=1}^{n} H(A_i | V_i B_i) + I(A_i; B_i | U_i) - I(A_i; E_i | U_i)$$

= $\frac{1}{n} \sum_{i=1}^{n} H(A_Q | V_Q B_Q, Q = i)$
+ $I(A_Q; B_Q | U_Q, Q = i) - I(A_Q; E_Q | U_Q, Q = i)$

- $= H(A_{\mathcal{Q}}|V_{\mathcal{Q}}B_{\mathcal{Q}},\mathcal{Q}) + I(A_{\mathcal{Q}};B_{\mathcal{Q}}|U_{\mathcal{Q}},\mathcal{Q}) I(A_{\mathcal{Q}};E_{\mathcal{Q}}|U_{\mathcal{Q}},\mathcal{Q})$
- = H(A|VB) + I(A;B|U) I(A;E|U)

Return

Allerton 2010

Δ

Secure Lossy Source Coding with SI at the Decoders

Cardinality Bounds

Outline

5 Appendix

- Eve Has Less Noisy SI Than Bob
- Proof of Achievability
- Proof of Converse
- Cardinality Bounds

Secure Lossy Source Coding with SI at the Decoders

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Cardinality Bounds

$$R \hspace{2mm} \geq \hspace{2mm} H(A|B) - H(AB|V) + H(B|V)$$

$$D \geq \mathbb{E}\left[d(A, \hat{A}(V, B))\right]$$

$$\Delta \leq \left[H(AB|V) - H(B|V) + I(A;B|U) - I(A;E|U)
ight]$$

Follow standard arguments¹:

- identify continuous functions of prob. distributions
- use Fenchel-Eggleston-Carathéodory's theorem to define new admissible random variables

(人間) くうり くうり う

¹ [A. El Gamal and Y.-H. Kim. Lecture Notes on Netw IT. arXiv:1001.3404]

 $\|A\| + 2$ continuous functions of p(v|u):

$$\begin{cases} p(a|u) = \mathbb{E}[p(a|V)|U = u] \\ H(AB|V, U = u) - H(B|V, U = u) = H(VAB|U = u) - H(VB|U = u) \\ \mathbb{E}[d(A, \hat{A}(V, B))|U = u] \\ I(A; B|U = u) - I(A; E|U = u) \end{cases}$$

Secure Lossy Source Coding with SI at the Decoders

・ロト < 個 > < 目 > < 目 > < 目 > のへの

 $\|A\| + 2$ continuous functions of p(v|u):

$$\begin{cases} p(a|u) = \mathbb{E}[p(a|V)|U = u] \\ H(AB|V, U = u) - H(B|V, U = u) = H(VAB|U = u) - H(VB|U = u) \\ \mathbb{E}[d(A, \hat{A}(V, B))|U = u] \\ I(A; B|U = u) - I(A; E|U = u) \end{cases}$$

Fenchel-Eggleston-Carathéodory's theorem \Rightarrow there exist:

• a set \mathcal{U}' with $\|\mathcal{U}'\| \le \|\mathcal{A}\| + 2$

a r.v. U' on \mathcal{U}' s.t. p(a), H(AB|V) - H(B|V), $\mathbb{E}[d(A, \hat{A}(V, B))]$ and I(A; B|U) - I(A; E|U) are preserved

For each $u' \in U'$, ||A|| + 1 continuous functions of p(a|u', v):

$$\begin{cases} p(a|u', v) \\ H(AB|U' = u', V = v) - H(B|U' = u', V = v) \\ \mathbb{E}[d(A, \hat{A}(V, B))|U' = u', V = v] \end{cases}$$

Secure Lossy Source Coding with SI at the Decoders

For each $u' \in U'$, ||A|| + 1 continuous functions of p(a|u', v):

$$\begin{cases} p(a|u', v) \\ H(AB|U' = u', V = v) - H(B|U' = u', V = v) \\ \mathbb{E}[d(A, \hat{A}(V, B))|U' = u', V = v] \end{cases}$$

Fenchel-Eggleston-Carathéodory's theorem \Rightarrow there exist:

■ a set \mathcal{V}' with $\|\mathcal{V}'\| \le \|\mathcal{A}\| + 1$ ■ for each $u' \in \mathcal{U}'$, a r.v. $V'|\{U' = u'\}$ on \mathcal{V}' a function $\hat{A}'_{u'} : \mathcal{V}' \times \mathcal{B} \to \mathcal{A}$ s.t. p(a|u'), H(AB|U' = u', V) - H(B|U' = u', V) and $\mathbb{E}[d(A, \hat{A}(V, B))|U' = u']$ are preserved.

- set $\mathcal{V}'' = \mathcal{U}' \times \mathcal{V}'$
- random variable V'' = (U', V')
- $\blacksquare \text{ fun. } \hat{A}'': \mathcal{V}'' \times \mathcal{B} \to \mathcal{A} \text{ by } \hat{A}''(v'', b) = \hat{A}''(u', v', b) \triangleq \hat{A}'_{u'}(v', b)$

U' - V'' - A - (B, E) form a Markov chain

Secure Lossy Source Coding with SI at the Decoders

- set $\mathcal{V}'' = \mathcal{U}' \times \mathcal{V}'$
- random variable V'' = (U', V')
- $\blacksquare \text{ fun. } \hat{A}'': \mathcal{V}'' \times \mathcal{B} \to \mathcal{A} \text{ by } \hat{A}''(v'', b) = \hat{A}''(u', v', b) \triangleq \hat{A}'_{u'}(v', b)$

U' - V'' - A - (B, E) form a Markov chain

 $\begin{aligned} H(AB|V'') - H(B|V'') &= H(AB|U',V') - H(B|U',V') \\ &= H(AB|U',V) - H(B|U',V) \\ &= H(AB|V) - H(B|V) \end{aligned}$

Secure Lossy Source Coding with SI at the Decoders

- set $\mathcal{V}'' = \mathcal{U}' \times \mathcal{V}'$
- random variable V'' = (U', V')
- $\blacksquare \text{ fun. } \hat{A}'': \mathcal{V}'' \times \mathcal{B} \to \mathcal{A} \text{ by } \hat{A}''(v'', b) = \hat{A}''(u', v', b) \triangleq \hat{A}'_{u'}(v', b)$

$$U' - V'' - A - (B, E)$$
 form a Markov chain

$$\begin{aligned} H(AB|V'') - H(B|V'') &= H(AB|V) - H(B|V) \\ \mathbb{E}[d(A, \hat{A}''(V'', B))] &= \mathbb{E}[d(A, \hat{A}'_{U'}(V', B))] \\ &= \mathbb{E}\Big[\mathbb{E}[d(A, \hat{A}'_{U'}(V', B))|U']\Big] \\ &= \mathbb{E}\Big[\mathbb{E}[d(A, \hat{A}(V, B))|U']\Big] \\ &= \mathbb{E}[d(A, \hat{A}(V, B))] \end{aligned}$$

- $\blacksquare \text{ set } \mathcal{V}'' = \mathcal{U}' \times \mathcal{V}' \quad \|\mathcal{V}''\| \le (\|\mathcal{A}\| + 2)(\|\mathcal{A}\| + 1)$
- random variable V'' = (U', V')
- $\blacksquare \text{ fun. } \hat{A}'': \mathcal{V}'' \times \mathcal{B} \to \mathcal{A} \text{ by } \hat{A}''(v'', b) = \hat{A}''(u', v', b) \triangleq \hat{A}'_{u'}(v', b)$

U' - V'' - A - (B, E) form a Markov chain

$$H(AB|V'') - H(B|V'') = H(AB|V) - H(B|V)$$
$$\mathbb{E}[d(A, \hat{A}''(V'', B))] = \mathbb{E}[d(A, \hat{A}(V, B))]$$

▲ Return

Allerton 2010

Secure Lossy Source Coding with SI at the Decoders