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Introduction

m Y, = (Y...Y,): astationary vector-valued process

m Binary test HO: Yy, ~ po

H1: Yy, ~ P1
Y1 Y, A A Y,
QN QN | I QN
ZN,I ZN_Q : : ZN,n
] Decision Device \
!
Ho/H1 ?
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Introduction (cont.)

Our aims:
m evaluate the performance of the test

m determine relevant quantization rules

Main difficulties:
B quantization is a complex operation

m observations are correlated
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Detection from Unquantized Obervations

Outline

Detection from Ungquantized Obervations
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Detection from Unquantized Obervations Hypothesis Testing

Neyman-Pearson Hypothesis Testing

m Yy, = (Y;...Y,): astationary vector-valued (in R?)
Lebesgue-dominated process

m Binary test HO: Yy, ~ Py (pdf po)
HL: Yy, ~ P (pdfpl)
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Detection from Unquantized Obervations Hypothesis Testing

Neyman-Pearson Hypothesis Testing

m Yy, = (Y;...Y,): astationary vector-valued (in R?)
Lebesgue-dominated process

m Binary test HO: Yy, ~ Py (pdf po)
HL: Yy, ~ P (pdfpl)

Neyman-Pearson strategy:
m set Py(decide H1) = o false alarm

®m minimize P, (decide H0) — S,(«) miss

H1
Likelihood Ratio Test: L, = log 2L (¥1.,) = ~
Po HO
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Detection from Unquantized Obervations Stein’s Lemma Generalization

Error Exponent

Our aim is to measure the detection performance. ]

m 5,(«) is a good performance measure ...
m ...Dbutis not tractable

— asymptotic regime n — o
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Detection from Unquantized Obervations Stein’s Lemma Generalization

Error Exponent

Our aim is to measure the detection performance. J

m 5,(«) is a good performance measure ...
m ...Dbutis not tractable

— asymptotic regime n — o

Lemma (Stein-Chen)

If 3K > 0 such that (—1/n)L, = K under HO then

Vae(0,1) lim —llogﬂn(a) =K

n—+oo n

K is the error exponent of the test:  ,(a) ~ exp(—nK)
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Detection from Unquantized Obervations Error Exponent

Error Exponent with Perfect Observations (n — oo)

Assumption
(log pi(Yo|Y—m.—1))m>0 is @ convergent sequence in L' (P). J

e.g. valid for a wide class of hidden Markov models.

Shannon-McMillan-Breiman—like result
The normalized LLR —(1/n)L, converges under HO to

0
K= IE0 log%(YO‘Y—oo:—l)
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Detection from Quantized Obervations

Outline

Detection from Quantized Obervations
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Detection from Quantized Obervations Error Exponent for Quantized Observations

Neyman-Pearson Test on Quantized Obervations
m Quantized observation: Zy ; = Oy(Yx)

m The test becomes: HO: Zy 1., ~ pon
H1 : ZN,I:n ~ P1,N
Error exponent

KN = E() IOg l’;oi’N(ZNyo

»

ZN,—oo:—l)

Our aim is to study the error exponent loss K — Ky
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Error Exponent for Quantized Observations
Effect of the Quantization Rule

m a quantizer = a partition of R?

m the error exponent loss is not directly informative

K—KN = Eo logz(])(YO‘Y—oo:—l)] —EO |:10g507N

(Zno|ZN,—o0:i—1)

B

— special cases:
mN=2
B N — oo (high-rate quantization)

[Gupta & Hero — 2003] for i.i.d. observations.
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Outline

Detection in the High-Rate Regime
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High-Rate Quantization (N — o0)

cf. [Bennett48], [Gray98]

model point density {(y)
~ asymptotic number of cells in the neighborhood of y

In the high-rate regime:

number of quantization points in A
E ~ £ — /A C(y)dy
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High-Rate Quantization (N — o0)

cf. [Bennett48], [Gray98]

model point density {(y)
~ asymptotic number of cells in the neighborhood of y

model covariation profile M(y)

= lim W/ (s — On () (s — On () ds .
Cn(y)

N—o00

m a matrix-valued function. ..
m ... which provides information about the shape of the cells

Functions ¢ and M completely characterize the quantizer. J
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High-Rate Quantization
Main Result

Theorem (Asymptotic Error Exponent Loss)

fd(g _ _ L [ po»)F(y)
N¥4(K K;\/)m>D_2 C())Z/d d

where

F(y) =Ey vyo logl;*(l)(y—oo:oo)TM(YO) vyo logl;i(l)(Y—oo:oo) ‘ Yo = y:|

v

Under the mixing condition:

Eo |log pi(Yo|Y—m:—1) — log pi(Yo|Y—m—z:—1)] = O(m™°7¢),

and some good smoothing conditions on the log-densities.
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High-Rete Quartization
Key ldeas of the Proof

| (K = KN)

_ lim By [log 22(Yo|Y_ 1) — log 22 (Zyo|Zy, m1)

m—00 P1,N
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High-Rete Quartization
Key ldeas of the Proof

m lim NYYK —Ky)

N—oo

= lim lim NiE, [logPO(Yo|Y, —1) —

N—oo m—oo

i N(ZNOIZN P
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High-Rete Quartization
Key ldeas of the Proof

m lim NY9(K —Ky)

N—oo

= lim lim NiE, [logPO(Yo|Y, 1) — log?

N—oo m—oo

i o (Zn 01 Zn,—mi—1)

m Taylor-Lagrange expansion of densities: ;"1’—5 R~ f)—‘l’ as N — oo

ISIT 2010 High-Rate Quantization for NP Detection of Stationary Processes 14/18



High-Rete Quartization
Key ldeas of the Proof

m lim NY9(K —Ky)

N—oo

ZNo|ZN,—m:—1)

= lim lim NiE, [logPO(Yo|Y, 1) — logplN(

N—oo m—oo

m Taylor-Lagrange expansion of densities: ;"1’—5 R~ f)—‘l’ as N — oo

. 2/d
. —
Jim N*4(K — Ky)

2 lim lim NiE, log B2(Yo|Y—m:—1) — M

m—o00 N—oo LN ’ ’ '71):|
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High-Rete Quartization
Key ldeas of the Proof

m lim NY9(K —Ky)

N—oo

= lim lim NdEO [logPO(Yo|Y, —1) — log 2 (Zn 0| Zy —m:—1)

N—oo m—00 pl N
m Taylor-Lagrange expansion of densities: ;"1’—5 R~ f)—‘l’ as N — oo
m lim NYYK —K,
i, VK = Ky)
2 lim lim NiE, logp°(Y0|Y, 1) — logPON(

,1)}
m—00 N—o00

Main issue:

Find relevant estimates of the remainders in m, N.
— Mixing conditions are needed.
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Determination of Relevant Quantization Rules

— Find (¢, M) which minimizes the loss D:

L [PWED)
2 ()

F(y) = Eo [Vyolog (Y—o0100) TM(Y0) Vyolog (Y_oooo ‘Yo—y]
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________Deteclioninthe Hign-Rate Regime [RLNISE ISR
Determination of Relevant Quantization Rules

— Find (¢, M) which minimizes the loss D:

m Scalar case (d = 1): optimal regular quantizer, M(y) = %

o lPoG)FO)'
O = TR P e
2
F(Y) = IE0 (5?0 logzi(l)(yfoo oo)> YO :y]
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Determination of Relevant Quantization Rules

— Find (¢, M) which minimizes the loss D:

m Scalar case (d = 1): optimal regular quantizer, M(y) = %

m Vector case (d > 2):

classical algorithms (e.g, Linde-Buzo-Gray): M(y) = vl
— “locally” optimal quantizer

60k 6)) i
C(y) = le?o(S)F(S)]d/(d+2) s
2
F(y) = Eo ||%, logl%(ono:oo) Yy :y]
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Detection of a 2-D Gaussian AR-1 Structure
Detection of a 2-D Gaussian AR-1 Structure

State: Observation:

HO: X, "% eN(o,1) Y = X + Wi
HI: X, = aXe 1 + V1 —a? Us

ae ((3, 1): correlation coefficient W, R €N(0, 5%): obs. noise

U~ €N(0,1): innovation
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Detection of a 2-D Gaussian AR-1 Structure
Detection of a 2-D Gaussian AR-1 Structure

State: Observation:

HO: X, "% eN(o,1) Y = X + Wi
HI: X, = aXe 1 + V1 —a? Us

S ((3, 1): correlation coefficient W, R €N(0, 5%): obs. noise

U "% @N(0, 1): innovation

@
N O T T S
L«

R S T - T TR

MSE-optimal 64-cell quantizer (@ = 0.8, o = 1) Proposed 64-cell quantizer (a = 0.8, c = 1)
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Detection of a 2-D Gaussian AR-1 Structure
Detection of a 2-D Gaussian AR-1 Structure

State: Observation:

HO: X, "% eN(o,1) Yi = X + Wi
HI: X = aXii + V1 — a2 U,

S (O, 1): correlation coefficient W, R €N(0, 5%): obs. noise

U "% @N(0, 1): innovation

Error exponent loss (a = 0.8, o = 1):

Quantization rule || Uniform on [—8;8]* | MSE-optimal ‘ Proposed one

Loss D H 8.211 ‘ 2.255 ‘ 2112
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Conclusion

m Neyman-Pearson test on quantized observations
— n observations, quantization on log,(N) bits

m Evaluation of the performance

for large n,N and n > N.

m Optimal scalar,
“locally” optimal vector quantization rules

m Valid for a class of stationary mixing processes
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Conclusion (cont.)

Extended version (with complete proofs and more examples):
m submitted to IEEE Trans. Inf. Theory,
m available on Arxiv (arXiv:1004.5529).
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Conclusion (cont.)

Extended version (with complete proofs and more examples):
m submitted to IEEE Trans. Inf. Theory,
m available on Arxiv (arXiv:1004.5529).

Thank you for your attention.
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