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Introduction

Introduction

Y1:n = (Y1 . . . Yn): a stationary vector-valued process

Binary test H0 : Y1:n ∼ p0

H1 : Y1:n ∼ p1

Y1 Y2 . . . . . . Yn

QN QN QN

Decision Device

ZN,1 ZN,2 ZN,n

H0/H1 ?

ISIT 2010 High-Rate Quantization for NP Detection of Stationary Processes 2 / 18



Introduction

Introduction (cont.)

Our aims:

evaluate the performance of the test

determine relevant quantization rules

Main difficulties:

quantization is a complex operation

observations are correlated
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Detection from Unquantized Obervations

Outline

1 Detection from Unquantized Obervations

2 Detection from Quantized Obervations

3 Detection in the High-Rate Regime
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Detection from Unquantized Obervations Hypothesis Testing

Neyman-Pearson Hypothesis Testing

Y1:n = (Y1 . . . Yn): a stationary vector-valued (in Rd)
Lebesgue-dominated process

Binary test H0 : Y1:n ∼ P0 (pdf p0)

H1 : Y1:n ∼ P1 (pdf p1)

Neyman-Pearson strategy:

set P0(decide H1) = α false alarm
minimize P1(decide H0) → βn(α) miss

Likelihood Ratio Test: Ln = log
p1

p0
(Y1:n)

H1

≷
H0

γ
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Detection from Unquantized Obervations Stein’s Lemma Generalization

Error Exponent

Our aim is to measure the detection performance.

βn(α) is a good performance measure . . .
. . . but is not tractable

→ asymptotic regime n→∞

Lemma (Stein-Chen)

If ∃ K > 0 such that (−1/n)Ln
P→ K under H0 then

∀ α ∈ (0, 1) lim
n→+∞

−1
n

logβn(α) = K

K is the error exponent of the test: βn(α) ≈ exp(−nK)
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Detection from Unquantized Obervations Error Exponent

Error Exponent with Perfect Observations (n→∞)

Assumption

(log pi(Y0|Y−m:−1))m≥0 is a convergent sequence in L1(P0).

e.g. valid for a wide class of hidden Markov models.

Shannon-McMillan-Breiman–like result
The normalized LLR −(1/n)Ln converges under H0 to

K = E0

[
log

p0

p1
(Y0|Y−∞:−1)

]
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Detection from Quantized Obervations

Outline

1 Detection from Unquantized Obervations

2 Detection from Quantized Obervations

3 Detection in the High-Rate Regime

ISIT 2010 High-Rate Quantization for NP Detection of Stationary Processes 8 / 18



Detection from Quantized Obervations Error Exponent for Quantized Observations

Neyman-Pearson Test on Quantized Obervations

Quantized observation: ZN,k = QN(Yk)

The test becomes: H0 : ZN,1:n ∼ p0,N

H1 : ZN,1:n ∼ p1,N

Error exponent

KN = E0

[
log

p0,N

p1,N
(ZN,0|ZN,−∞:−1)

]

Our aim is to study the error exponent loss K − KN
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Detection from Quantized Obervations Error Exponent for Quantized Observations

Effect of the Quantization Rule

a quantizer = a partition of Rd

the error exponent loss is not directly informative

K−KN = E0

[
log

p0

p1
(Y0|Y−∞:−1)

]
−E0

[
log

p0,N

p1,N
(ZN,0|ZN,−∞:−1)

]
→ special cases:

N = 2
N →∞ (high-rate quantization)

[Gupta & Hero – 2003] for i.i.d. observations.
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Detection in the High-Rate Regime

Outline

1 Detection from Unquantized Obervations

2 Detection from Quantized Obervations

3 Detection in the High-Rate Regime

ISIT 2010 High-Rate Quantization for NP Detection of Stationary Processes 11 / 18



Detection in the High-Rate Regime High-Rate Quantization

High-Rate Quantization (N →∞)

cf. [Bennett48], [Gray98]

model point density ζ(y)

≈ asymptotic number of cells in the neighborhood of y

In the high-rate regime:

number of quantization points in A
N

−→
∫

A
ζ(y) dy
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Detection in the High-Rate Regime High-Rate Quantization

High-Rate Quantization (N →∞)

cf. [Bennett48], [Gray98]

model point density ζ(y)

≈ asymptotic number of cells in the neighborhood of y

model covariation profile M(y)

= lim
N→∞

1
VN(y)1+2/d

∫
CN(y)

(s− QN(y))(s− QN(y))Tds .

a matrix-valued function. . .
. . . which provides information about the shape of the cells

Functions ζ and M completely characterize the quantizer.
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Detection in the High-Rate Regime High-Rate Quantization

Main Result

Theorem (Asymptotic Error Exponent Loss)

N2/d(K − KN) −−−−→
N→∞

D =
1
2

∫
p0(y)F(y)

ζ(y)2/d
dy

where

F(y) = E0

[
∇y0 log

p0

p1
(Y−∞:∞)TM(Y0)∇y0 log

p0

p1
(Y−∞:∞)

∣∣∣Y0 = y
]

Under the mixing condition:

E0 |log pi(Y0|Y−m:−1)− log pi(Y0|Y−m−`:−1)| = O(m−6−ε) ,

and some good smoothing conditions on the log-densities.
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Detection in the High-Rate Regime High-Rate Quantization

Key Ideas of the Proof

lim
N→∞

N2/d

(K − KN)

=

lim
N→∞

lim
m→∞

N
2
d

E0

[
log p0

p1
(Y0|Y−m:−1)− log p0,N

p1,N
(ZN,0|ZN,−m:−1)

]

Taylor-Lagrange expansion of densities: p0,N
p1,N
≈ p0

p1
as N →∞

lim
N→∞

N2/d(K − KN)

=? lim
m→∞

lim
N→∞

N
2
d E0

[
log p0

p1
(Y0|Y−m:−1)− log p0,N

p1,N
(ZN,0|ZN,−m:−1)

]

Main issue:
Find relevant estimates of the remainders in m, N.
→ Mixing conditions are needed.
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Detection in the High-Rate Regime High-Rate Quantization

Determination of Relevant Quantization Rules

→ Find (ζ,M) which minimizes the loss D:

D =
1
2

∫
p0(y)F(y)

ζ(y)2/d
dy

F(y) = E0

[
∇y0 log

p0

p1
(Y−∞:∞)TM(Y0)∇y0 log

p0

p1
(Y−∞:∞)

∣∣∣Y0 = y
]

Scalar case (d = 1): optimal regular quantizer, M(y) = 1
12

Vector case (d ≥ 2):

classical algorithms (e.g, Linde-Buzo-Gray): M(y) = υId

→ “locally” optimal quantizer
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∂
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Numerical Results Detection of a 2-D Gaussian AR-1 Structure

Detection of a 2-D Gaussian AR-1 Structure

State:

H0 : Xk
i.i.d.∼ CN(0, 1)

H1 : Xk = aXk−1 +
√

1− a2 Uk

Observation:

Yk = Xk + Wk

a ∈ (0, 1): correlation coefficient
Uk

i.i.d.∼ CN(0, 1): innovation
Wk

i.i.d.∼ CN(0, σ2): obs. noise
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a ∈ (0, 1): correlation coefficient
Uk

i.i.d.∼ CN(0, 1): innovation
Wk

i.i.d.∼ CN(0, σ2): obs. noise

MSE-optimal 64-cell quantizer (a = 0.8, σ = 1) Proposed 64-cell quantizer (a = 0.8, σ = 1)
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State:

H0 : Xk
i.i.d.∼ CN(0, 1)

H1 : Xk = aXk−1 +
√

1− a2 Uk

Observation:

Yk = Xk + Wk

a ∈ (0, 1): correlation coefficient
Uk

i.i.d.∼ CN(0, 1): innovation
Wk

i.i.d.∼ CN(0, σ2): obs. noise

Error exponent loss (a = 0.8, σ = 1):

Quantization rule Uniform on [−8; 8]2 MSE-optimal Proposed one

Loss D 8.211 2.255 2.112
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Conclusion

Conclusion

Neyman-Pearson test on quantized observations
→ n observations, quantization on log2(N) bits

Evaluation of the performance

βn(α) ≈ e−n
(

K− D
N2/d

)

for large n,N and n� N.

Optimal scalar,
“locally” optimal vector quantization rules

Valid for a class of stationary mixing processes
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Conclusion

Conclusion (cont.)

Extended version (with complete proofs and more examples):
submitted to IEEE Trans. Inf. Theory,
available on Arxiv (arXiv:1004.5529).

Thank you for your attention.
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