High-Rate Vector Quantization for the Neyman-Pearson Detection of Some Stationary Mixing Processes

Joffrey Villard¹ and Pascal Bianchi²

¹SUPELEC, Telecom. Dpt., Gif-sur-Yvette, France

²LTCI Telecom ParisTech, Paris, France

ISIT 2010

4 ロト 4 何 ト 4 ヨ ト

Introduction

Introduction

 $Y_{1:n} = (Y_1 \dots Y_n)$: a stationary vector-valued process

Binary test H0 : *Y*1:*ⁿ* ∼ *p*⁰ $H1: Y_{1:n} \sim p_1$

画

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$

Introduction (cont.)

Our aims:

- evaluate the performance of the test
- determine relevant quantization rules

Main difficulties:

- quantization is a complex operation
- observations are correlated

KENKARY KENKEN

Outline

1 [Detection from Unquantized Obervations](#page-3-0)

- **2** [Detection from Quantized Obervations](#page-9-0)
- **3** [Detection in the High-Rate Regime](#page-12-0)

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト

Neyman-Pearson Hypothesis Testing

- $Y_{1:n} = (Y_1 \dots Y_n)$: a stationary vector-valued (in \mathbb{R}^d) Lebesgue-dominated process
- **Binary test** $H0: Y_{1:n} \sim \mathbb{P}_0$ (pdf p_0) $H1: Y_{1:n} \sim \mathbb{P}_1$ (pdf p_1)

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト -

Neyman-Pearson Hypothesis Testing

 $Y_{1:n} = (Y_1 \dots Y_n)$: a stationary vector-valued (in \mathbb{R}^d) Lebesgue-dominated process

■ Binary test H0 :
$$
Y_{1:n} \sim \mathbb{P}_0
$$
 (pdf p_0)
H1 : $Y_{1:n} \sim \mathbb{P}_1$ (pdf p_1)

Neyman-Pearson strategy:

set \mathbb{P}_0 (decide H1) = α *false alarm*

minimize \mathbb{P}_1 (decide H0) $\rightarrow \beta_n(\alpha)$ *miss* \blacksquare

Likelihood Ratio Test:
$$
L_n = \log \frac{p_1}{p_0}(Y_{1:n}) \overset{H_1}{\geq} \gamma
$$

H₀

イロト イ母 トイヨ トイヨ トー

Error Exponent

Our aim is to measure the detection performance.

- \mathbf{B} $\beta_n(\alpha)$ is a good performance measure ...
- \blacksquare . but is not tractable

 \rightarrow asymptotic regime $n \rightarrow \infty$

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

Error Exponent

Our aim is to measure the detection performance.

- $\mathbb{B}_{n}(\alpha)$ is a good performance measure ...
- \blacksquare . . . but is not tractable

 \rightarrow asymptotic regime $n \rightarrow \infty$

Lemma (Stein-Chen)

If ∃ *K* > 0 *such that* $(-1/n)L_n$ $\stackrel{P}{\rightarrow}$ *K under* H0 *then*

$$
\forall \alpha \in (0,1) \qquad \lim_{n \to +\infty} -\frac{1}{n} \log \beta_n(\alpha) = K
$$

K is the error exponent of the test: $\beta_n(\alpha) \approx \exp(-nK)$

ISIT 2010 [High-Rate Quantization for NP Detection of Stationary Processes](#page-0-0) 6 / 18

イロメ イタメ イモメノモメー

Error Exponent with Perfect Observations $(n \to \infty)$

Assumption

 $(\log p_i(Y_0|Y_{-m:-1}))_{m\geq 0}$ is a convergent sequence in $L^1(\mathbb{P}_0)$.

e.g. valid for a wide class of hidden Markov models.

Shannon-McMillan-Breiman–like result

The normalized LLR $-(1/n)L_n$ converges under H0 to

$$
K = \mathbb{E}_0 \left[\log \frac{p_0}{p_1} (Y_0 | Y_{-\infty:-1}) \right]
$$

イロメ イ押 メイモメイモメー

Outline

1 [Detection from Unquantized Obervations](#page-3-0)

2 [Detection from Quantized Obervations](#page-9-0)

3 [Detection in the High-Rate Regime](#page-12-0)

Ξ

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

Neyman-Pearson Test on Quantized Obervations

Quantized observation: $Z_{N,k} = Q_N(Y_k)$ $\mathcal{L}_{\mathcal{A}}$

■ The test becomes: $H0: Z_{N,1:n} \sim p_{0,N}$ $H1: Z_{N,1:n}$ ∼ $p_{1,N}$

Error exponent

$$
K_N=\mathbb{E}_0\left[\log \frac{p_{0,N}}{p_{1,N}}(Z_{N,0}|Z_{N,-\infty:-1})\right]
$$

Our aim is to study the error exponent loss $K - K_N$

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト -

Effect of the Quantization Rule

- a quantizer $=$ a partition of \mathbb{R}^d
- \blacksquare the error exponent loss is not directly informative

$$
K - K_N = \mathbb{E}_0 \left[\log \frac{p_0}{p_1} (Y_0 | Y_{-\infty:-1}) \right] - \mathbb{E}_0 \left[\log \frac{p_{0,N}}{p_{1,N}} (Z_{N,0} | Z_{N,-\infty:-1}) \right]
$$

- \rightarrow special cases:
	- $N = 2$ \blacksquare *N* $\rightarrow \infty$ (high-rate quantization)

[Gupta & Hero – 2003] for i.i.d. observations.

KENKARY KENKEN

Outline

1 [Detection from Unquantized Obervations](#page-3-0)

- **2** [Detection from Quantized Obervations](#page-9-0)
- 3 [Detection in the High-Rate Regime](#page-12-0)

 Ω

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$

High-Rate Quantization ($N \to \infty$)

cf. [Bennett48], [Gray98]

model point density ζ(*y*)

≈ asymptotic number of cells in the neighborhood of *y*

In the high-rate regime:

number of quantization points in
$$
A
$$
 \longrightarrow $\int_A \zeta(y) dy$

KENKARY KENKEN

High-Rate Quantization ($N \to \infty$)

cf. [Bennett48], [Gray98]

model point density ζ(*y*)

≈ asymptotic number of cells in the neighborhood of *y*

model covariation profile *M*(*y*)

$$
= \lim_{N \to \infty} \; \frac{1}{V_N(y)^{1+2/d}} \int_{C_N(y)} (s - Q_N(y))(s - Q_N(y))^{\top} ds \; .
$$

- a matrix-valued function. . .
- \blacksquare ... which provides information about the shape of the cells

Functions ζ and *M* completely characterize the quantizer.

 Ω

Main Result

Theorem (Asymptotic Error Exponent Loss)

$$
N^{2/d}(K - K_N) \xrightarrow[N \to \infty]{} D = \frac{1}{2} \int \frac{p_0(y)F(y)}{\zeta(y)^{2/d}} dy
$$

where

$$
F(y) = \mathbb{E}_0 \left[\nabla_{y_0} \log \frac{p_0}{p_1} (Y_{-\infty:\infty})^\mathsf{T} M(Y_0) \nabla_{y_0} \log \frac{p_0}{p_1} (Y_{-\infty:\infty}) \middle| Y_0 = y \right]
$$

Under the mixing condition:

$$
\mathbb{E}_0 \left| \log p_i(Y_0|Y_{-m:-1}) - \log p_i(Y_0|Y_{-m-\ell:-1}) \right| \; = \; O(m^{-6-\epsilon}),
$$

and some good smoothing conditions on the log-densities.

ISIT 2010 [High-Rate Quantization for NP Detection of Stationary Processes](#page-0-0) 13 / 18

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$

 $(K - K_N)$ = $\lim_{m \to \infty} \qquad \mathbb{E}_0 \left[\log \frac{p_0}{p_1} (Y_0 | Y_{-m:-1}) - \log \frac{p_{0,N}}{p_{1,N}} (Z_{N,0} | Z_{N,-m:-1}) \right]$

ISIT 2010 [High-Rate Quantization for NP Detection of Stationary Processes](#page-0-0) 14 / 18

 \equiv

 $(0.8, 0.8)$ $(0.8, 0.8)$

■
$$
\lim_{N \to \infty} N^{2/d} (K - K_N)
$$

=
$$
\lim_{N \to \infty} \lim_{m \to \infty} N^{\frac{2}{d}} \mathbb{E}_0 \left[\log \frac{p_0}{p_1} (Y_0 | Y_{-m:-1}) - \log \frac{p_{0,N}}{p_{1,N}} (Z_{N,0} | Z_{N,-m:-1}) \right]
$$

ISIT 2010 [High-Rate Quantization for NP Detection of Stationary Processes](#page-0-0) 14 / 18

目

KONARD KENKEN

$$
\lim_{N \to \infty} N^{2/d} (K - K_N)
$$
\n
$$
= \lim_{N \to \infty} \lim_{m \to \infty} N^{\frac{2}{d}} \mathbb{E}_0 \left[\log \frac{p_0}{p_1} (Y_0 | Y_{-m:-1}) - \log \frac{p_{0,N}}{p_{1,N}} (Z_{N,0} | Z_{N,-m:-1}) \right]
$$

Taylor-Lagrange expansion of densities: $\frac{p_{0,N}}{p_{1,N}} \approx \frac{p_0}{p_1}$ $\frac{p_0}{p_1}$ as $N \to \infty$

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

$$
\lim_{N \to \infty} \frac{N^{2/d} (K - K_N)}{\lim_{N \to \infty} \lim_{m \to \infty} N^{\frac{2}{d}} \mathbb{E}_0 \left[\log \frac{p_0}{p_1} (Y_0 | Y_{-m:-1}) - \log \frac{p_{0,N}}{p_{1,N}} (Z_{N,0} | Z_{N,-m:-1}) \right]}
$$

Taylor-Lagrange expansion of densities: $\frac{p_{0,N}}{p_{1,N}} \approx \frac{p_0}{p_1}$ $\frac{p_0}{p_1}$ as $N \to \infty$

■
$$
\lim_{N \to \infty} N^{2/d}(K - K_N)
$$

\n $\frac{2}{\pi} \lim_{m \to \infty} \lim_{N \to \infty} N^{\frac{2}{d}} \mathbb{E}_0 \left[\log \frac{p_0}{p_1}(Y_0 | Y_{-m:-1}) - \log \frac{p_{0,N}}{p_{1,N}}(Z_{N,0} | Z_{N,-m:-1}) \right]$

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

$$
\lim_{N \to \infty} \frac{N^{2/d}(K - K_N)}{\lim_{N \to \infty} \lim_{m \to \infty} N^{\frac{2}{d}} \mathbb{E}_0 \left[\log \frac{p_0}{p_1}(Y_0 | Y_{-m:-1}) - \log \frac{p_{0,N}}{p_{1,N}} (Z_{N,0} | Z_{N,-m:-1}) \right]}
$$

Taylor-Lagrange expansion of densities: $\frac{p_{0,N}}{p_{1,N}} \approx \frac{p_0}{p_1}$ $\mathcal{L}_{\mathcal{A}}$ $\frac{p_0}{p_1}$ as $N \to \infty$

■
$$
\lim_{N \to \infty} N^{2/d} (K - K_N)
$$

\n
$$
\frac{2}{\pi} \lim_{m \to \infty} \lim_{N \to \infty} N^{\frac{2}{d}} \mathbb{E}_0 \left[\log \frac{p_0}{p_1} (Y_0 | Y_{-m:-1}) - \log \frac{p_{0,N}}{p_{1,N}} (Z_{N,0} | Z_{N,-m:-1}) \right]
$$

Main issue:

Find relevant estimates of the remainders in *m*, *N*.

 \rightarrow Mixing conditions are needed.

 $1.7.1 \times 1.01$

Determination of Relevant Quantization Rules

 \rightarrow Find (ζ , *M*) which minimizes the loss *D*:

 $\int_{a}^{b} p(x) F(x)$

$$
D = \frac{1}{2} \int \frac{p_0(y)F(y)}{\zeta(y)^{2/d}} dy
$$

$$
F(y) = \mathbb{E}_0 \left[\nabla_{y_0} \log \frac{p_0}{p_1} (Y_{-\infty:\infty})^{\mathsf{T}} M(Y_0) \nabla_{y_0} \log \frac{p_0}{p_1} (Y_{-\infty:\infty}) \middle| Y_0 = y \right]
$$

1

ISIT 2010 [High-Rate Quantization for NP Detection of Stationary Processes](#page-0-0) 15 / 18

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

Determination of Relevant Quantization Rules

 \rightarrow Find (ζ , *M*) which minimizes the loss *D*:

Scalar case $(d = 1)$: optimal regular quantizer, $M(y) = \frac{1}{12}$

$$
\zeta^*(y) = \frac{[p_0(y)\bar{F}(y)]^{1/3}}{\int [p_0(s)\bar{F}(s)]^{1/3} ds}
$$

$$
\bar{F}(y) = \mathbb{E}_0 \left[\left(\frac{\partial}{\partial y_0} \log \frac{p_0}{p_1} (Y_{-\infty:\infty}) \right)^2 \middle| Y_0 = y \right]
$$

ISIT 2010 [High-Rate Quantization for NP Detection of Stationary Processes](#page-0-0) 15 / 18

画

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$

Determination of Relevant Quantization Rules

- \rightarrow Find (ζ , *M*) which minimizes the loss *D*:
	- Scalar case $(d = 1)$: optimal regular quantizer, $M(y) = \frac{1}{12}$
	- Vector case $(d \ge 2)$:

classical algorithms (*e.g*, Linde-Buzo-Gray): *M*(*y*) = υ*I^d* \rightarrow "locally" optimal quantizer

$$
\zeta^*(y) = \frac{[p_0(y)\bar{F}(y)]^{d/(d+2)}}{\int [p_0(s)\bar{F}(s)]^{d/(d+2)} ds}
$$

$$
\bar{F}(y) = \mathbb{E}_0 \left[\left\| \nabla_{y_0} \log \frac{p_0}{p_1} (Y_{-\infty:\infty}) \right\|^2 \middle| Y_0 = y \right]
$$

ISIT 2010 [High-Rate Quantization for NP Detection of Stationary Processes](#page-0-0) 15 / 18

KONKAN KENKEN E KORA

Detection of a 2-D Gaussian AR-1 Structure

State: $H0: X_k \stackrel{i.i.d.}{\sim} \mathcal{CN}(0,1)$ $H1: X_k = aX_{k-1} + \sqrt{1 - a^2} U_k$

 $a \in (0,1)$: correlation coefficient $U_k \stackrel{i.i.d.}{\sim}$ $\mathbb{CN}(0,1)$: innovation

Observation:

$$
Y_k=X_k+W_k
$$

 $(0.8, 0.00)$ (0.000) (0.000)

$$
W_k \stackrel{i.i.d.}{\sim} \mathcal{CN}(0, \sigma^2)
$$
: obs. noise

Detection of a 2-D Gaussian AR-1 Structure

State: $H0: X_k \stackrel{i.i.d.}{\sim} \mathcal{CN}(0,1)$ $H1: X_k = aX_{k-1} + \sqrt{1 - a^2} U_k$ $a \in (0,1)$: correlation coefficient $U_k \stackrel{i.i.d.}{\sim}$ $\mathbb{CN}(0,1)$: innovation $\overline{3}$ $\overline{2}$ \mathbf{e} \overline{a} احا J. $\mathbf{0}$ (1)

Observation:

$$
Y_k=X_k+W_k
$$

$$
W_k \stackrel{i.i.d.}{\sim} \mathcal{CN}(0, \sigma^2)
$$
: obs. noise

ISIT 2010 [High-Rate Quantization for NP Detection of Stationary Processes](#page-0-0) 16 / 18

Detection of a 2-D Gaussian AR-1 Structure

State: $H0: X_k \stackrel{i.i.d.}{\sim} \mathcal{CN}(0,1)$ $H1: X_k = aX_{k-1} + \sqrt{1 - a^2} U_k$ Observation: $Y_k = X_k + W_k$ $a \in (0, 1)$: correlation coefficient $W_k \stackrel{i.i.d.}{\sim}$ CN(0, σ^2): obs. noise

Error exponent loss $(a = 0.8, \sigma = 1)$:

 $U_k \stackrel{i.i.d.}{\sim}$ $\mathbb{CN}(0,1)$: innovation

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト -

Conclusion

Neyman-Pearson test on quantized observations \rightarrow *n* observations, quantization on $\log_2(N)$ bits

Evaluation of the performance

$$
\beta_n(\alpha) \approx e^{-n\left(K - \frac{D}{N^2/d}\right)}
$$

for large *n*, *N* and $n \gg N$.

Optimal scalar, "locally" optimal vector quantization rules

■ Valid for a class of stationary mixing processes

Conclusion (cont.)

Extended version (with complete proofs and more examples):

- submitted to *IEEE Trans. Inf. Theory*,
- available on *Arxiv* (arXiv:1004.5529).

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

Conclusion (cont.)

Extended version (with complete proofs and more examples):

- submitted to *IEEE Trans. Inf. Theory*,
- available on *Arxiv* (arXiv:1004.5529).

Thank you for your attention.

ISIT 2010 [High-Rate Quantization for NP Detection of Stationary Processes](#page-0-0) 18 / 18

イロト イ母 トイヨ トイヨ トー