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Introduction Detection in Wireless Sensor Networks

Context

a physical phenomenon
with space correlation

some sensors
a fusion center
wireless channels
→ quantization

Goal: detection from quantized observations

Questions:
performance of the Neyman-Pearson test?
best quantization?
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Introduction Detection in Wireless Sensor Networks

Neyman-Pearson test on quantized observations
n sensors
quantization on log2(N) bits

Evaluation of the performance:

Pe ≈ e−n
(

K− D
N2

)

for large n,N and n� N.

Our aims:
Evaluate the loss D due to quantization

Find the best quantization rule
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Detection from Unquantized Obervations

Outline

1 Detection from Unquantized Obervations

2 Detection from Quantized Obervations

3 Detection in the High-Rate Regime
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Detection from Unquantized Obervations Hypothesis Testing

Neyman-Pearson Hypothesis Testing

Y1:n = (Y1 . . .Yn): a stationary real-valued
Lebesgue-dominated process with mixing properties

Binary test H0 : Y1:n ∼ p0

H1 : Y1:n ∼ p1

Neyman-Pearson strategy :
set PH0(decide H1) = α false alarm
minimize PH1(decide H0) → βn(α) miss

Likelihood Ratio Test : Ln =
1
n

log
p0

p1
(Y1:n)

H0

≷
H1

λn
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Detection from Unquantized Obervations Stein’s Lemma Generalization

Error Exponent

Our aim is to measure the detection performance.

βn(α) is a good performance measure . . .
. . . but is not tractable

→ asymptotic regime n→ ∞

Lemma (Stein – Chen)

If ∃ K > 0 such that Ln
P→ K under H0 then

∀ α ∈ (0,1) lim
n→+∞

1
n

logβn(α) =−K

K is the error exponent of the test: βn(α)≈ exp(−nK)
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Detection from Unquantized Obervations Error Exponent

Error Exponent for Unquantized Observations (n→ ∞)

Under a certain mixing condition on p1

(e.g. valid for a wide class of hidden Markov models)

Shannon-McMillan-Breiman–like result
The LLR Ln converges under H0 to

K = E0

[
log

p0

p1
(Y0|Y−∞:−1)

]

K is the error exponent of the NP test.
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Detection from Quantized Obervations

Outline

1 Detection from Unquantized Obervations

2 Detection from Quantized Obervations

3 Detection in the High-Rate Regime
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Detection from Quantized Obervations Error Exponent for Quantized Observations

Neyman-Pearson Test on Quantized Obervations

Quantized observation: ZN,k = QN(Yk)

The test becomes: H0 : ZN,1:n ∼ p0,N

H1 : ZN,1:n ∼ p1,N

Error exponent

KN = E0

[
log

p0,N

p1,N
(ZN,0|ZN,−∞:−1)

]

Our aim is to study the error exponent loss K−KN

→ [Gupta & Hero – 2003] for i.i.d. observations.
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Detection in the High-Rate Regime

Outline

1 Detection from Unquantized Obervations

2 Detection from Quantized Obervations

3 Detection in the High-Rate Regime
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Detection in the High-Rate Regime High-Rate Quantization

High-Rate Quantization (N→ ∞)

Asymptotic regime: n,N→ ∞ but n� N

cf. [Bennett48], [Gray98]

model point density ζ

≈ asymptotic number of cells in the neighborhood of y

In the high-rate regime:

number of quantization points in A
N

⇒
∫

A
ζ (y)dy
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Detection in the High-Rate Regime High-Rate Quantization

Main Result

Theorem (Asymptotic Error Exponent Loss)

N2(K−KN)−−−→
N→∞

Dζ =
1
24

∫ p0(y)F(y)
ζ (y)2 dy

where F(y) = E0

[(
∂

∂y0
log p0

p1
(Y−∞:∞)

)2
∣∣∣∣ Y0 = y

]

Under some mixing conditions:

η
−1
m ≤ pi(Y0|Y−m′ :−1)

pi(Y0|Y−m:−1)
≤ ηm , η

−1
m ≤ pi,N(ZN,0|ZN,−m′ :−1)

pi,N(ZN,0|ZN,−m:−1)
≤ ηm∣∣∣ ∂

∂y0
logpi(Y0:k|Y−`:−1)− ∂

∂y0
logpi(Y0:k|Y−`′:−1)

∣∣∣≤ ϕ`∣∣∣ ∂

∂y0
logpi(Yk|Y−`:k−1)

∣∣∣≤ ψk

for logηm = O(m−6−ε ) and some summable ϕk and ψk.
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Detection in the High-Rate Regime High-Rate Quantization

Key Ideas of the Proof

Inversion of two limits:

lim
N→∞

N2(K−KN)

= lim
N→∞

lim
m→∞

N2E0

[
log p0

p1
(Y0|Y−m:−1)− log p0,N

p1,N
(ZN,0|ZN,−m:−1)

]
?
= lim

m→∞
lim

N→∞
N2E0

[
log p0

p1
(Y0|Y−m:−1)− log p0,N

p1,N
(ZN,0|ZN,−m:−1)

]
Taylor-Lagrange expansion of densities: p0,N

p1,N
≈ p0

p1
as N→ ∞

Main issue:
Find relevant estimates of the remainders in m, N.
→ Mixing conditions are needed.
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Numerical Results

Detection of a Gaussian AR-1 Process in Noise

State :

Xk = aXk−1 +
√

1−a2 Uk

Observation :

H0 : Yk = Wk

H1 : Yk = Xk +Wk

a ∈ (0,1): correlation coefficient
Uk

i.i.d.∼ N(0,1): innovation
Wk

i.i.d.∼ N(0,σ2): obs. noise

Probability and model point densities (σ = 1) Dζ = f (a) for different quantization strategies (σ = 1)
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Conclusion

Conclusion

Neyman-Pearson test on quantized observations
→ n sensors, quantization on log2(N) bits

Evaluation of the performance:

βn(α)≈ e−n
(

K− D
N2

)

for large n,N and n� N.

Optimal quantization rule

→ Valid for a wide class of stationary mixing processes
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Ongoing Work Vector Quantization

Ongoing Work: Vector Quantization (to be sub. to ISIT2010)

Vector-valued process: Yk ∈ Y⊂ Rd

Theorem (Asymptotic Error Exponent Loss)
Under some mixing conditions:

N2/d(K−KN)−−−→
N→∞

De =
1
2

∫ p0(y)F(y)
ζ (y)2/d dy ,

where F(y) = E0

[
∇y0 log p0

p1
(Y−∞:∞)

TM(Y0)∇y0 log p0
p1
(Y−∞:∞)

∣∣∣Y0 = y
]

M is the model covariation profile:
a matrix-valued function. . .
. . . which provides information about the shape of the cells

ITW 2010 High-Rate Quantization for NP Detection of HMM 16 / 17



Ongoing Work Vector Quantization

Ongoing Work: Vector Quantization (to be sub. to ISIT2010)

Vector-valued process: Yk ∈ Y⊂ Rd

Theorem (Asymptotic Error Exponent Loss)
Under some mixing conditions:

N2/d(K−KN)−−−→
N→∞

De =
1
2

∫ p0(y)F(y)
ζ (y)2/d dy ,

where F(y) = E0

[
∇y0 log p0

p1
(Y−∞:∞)

TM(Y0)∇y0 log p0
p1
(Y−∞:∞)

∣∣∣Y0 = y
]

M is the model covariation profile:
a matrix-valued function. . .
. . . which provides information about the shape of the cells

ITW 2010 High-Rate Quantization for NP Detection of HMM 16 / 17



The End...

Thank you for your attention.
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