High-Rate Quantization for the Neyman-Pearson Detection of Hidden Markov Processes

Joffrey Villard¹, Pascal Bianchi², Eric Moulines² and Pablo Piantanida¹

¹SUPELEC, Telecom. Dpt., Gif-sur-Yvette, France

²LTCI Telecom ParisTech, Paris, France

ITW 2010

 $($ \Box \rightarrow $($ \Box \rightarrow \rightarrow \Box \rightarrow $($

ITW 2010 **[High-Rate Quantization for NP Detection of HMM](#page-25-0)** 1 / 17

Context

- a physical phenomenon with space correlation
- some sensors
- \blacksquare a fusion center
- \triangle wireless channels
	- \rightarrow quantization

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$

Goal: detection from quantized observations

ITW 2010 **[High-Rate Quantization for NP Detection of HMM](#page-0-0)** 2/17

Context

- a physical phenomenon with space correlation
- some sensors
- \blacksquare a fusion center
- \triangle wireless channels \rightarrow quantization

Goal: detection from quantized observations

Questions:

- **•** performance of the Neyman-Pearson test?
- **o** best quantization?

• Neyman-Pearson test on quantized observations *n* sensors quantization on $\log_2(N)$ bits

• Evaluation of the performance:

$$
P_e \approx e^{-n\left(K - \frac{D}{N^2}\right)}
$$

for large *n*, *N* and $n \gg N$.

KENKARY KENKEN

• Neyman-Pearson test on quantized observations *n* sensors quantization on $\log_2(N)$ bits

• Evaluation of the performance:

$$
P_e \approx e^{-n\left(K - \frac{D}{N^2}\right)}
$$

for large n, N and $n \gg N$.

Our aims:

Evaluate the loss *D* due to quantization

Find the best quantization rule

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト

Outline

1 [Detection from Unquantized Obervations](#page-5-0)

[Detection from Quantized Obervations](#page-11-0)

[Detection in the High-Rate Regime](#page-14-0)

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト

Neyman-Pearson Hypothesis Testing

• $Y_{1:n} = (Y_1 \dots Y_n)$: a stationary real-valued Lebesgue-dominated process with mixing properties

\n- Binary test
$$
H_0: Y_{1:n} \sim p_0
$$
\n- $H_1: Y_{1:n} \sim p_1$
\n

4 ロ > 4 個 > 4 ミ > 4 ミ > 1

Neyman-Pearson Hypothesis Testing

• $Y_{1:n} = (Y_1 \dots Y_n)$: a stationary real-valued Lebesgue-dominated process with mixing properties

\n- Binary test
$$
H_0: Y_{1:n} \sim p_0
$$
\n- $H_1: Y_{1:n} \sim p_1$
\n

Neyman-Pearson strategy :

- $\frac{\mathsf{set}}{P_{H_0}}(\mathsf{decide}\ H_1) = \alpha$ *false alarm*
- $\text{minimize } P_{H_1}(\text{decide } H_0) \rightarrow \beta_n(\alpha)$ miss

Likelihood Ratio Test :
$$
L_n = \frac{1}{n} \log \frac{p_0}{p_1}(Y_{1:n}) \ge \lambda_n
$$

4 ロ > 4 個 > 4 ミ > 4 ミ > 1

Error Exponent

Our aim is to measure the detection performance.

- $\theta_n(\alpha)$ is a good performance measure ...
- . . . but is not tractable
- \rightarrow asymptotic regime $n \rightarrow \infty$

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$

Error Exponent

Our aim is to measure the detection performance.

- $\theta_n(\alpha)$ is a good performance measure ...
- . . . but is not tractable
- \rightarrow asymptotic regime $n \rightarrow \infty$

Lemma (Stein – Chen)

If ∃ *K* > 0 *such that* L_n $\stackrel{P}{\to}$ *K under* H_0 *then*

$$
\forall \alpha \in (0,1) \qquad \lim_{n \to +\infty} \frac{1}{n} \log \beta_n(\alpha) = -K
$$

K is the error exponent of the test: $\beta_n(\alpha) \approx \exp(-nK)$

ITW 2010 **[High-Rate Quantization for NP Detection of HMM](#page-0-0)** 6/17

 $(0.5, 0.6)$ $(0.5, 0.7)$

Error Exponent for Unquantized Observations $(n \rightarrow \infty)$

Under a certain mixing condition on p_1

(*e.g.* valid for a wide class of hidden Markov models)

Shannon-McMillan-Breiman–like result The LLR L_n converges under H_0 to

$$
K = E_0 \left[\log \frac{p_0}{p_1} (Y_0 | Y_{-\infty:-1}) \right]
$$

K is the error exponent of the NP test.

Outline

[Detection from Unquantized Obervations](#page-5-0)

2 [Detection from Quantized Obervations](#page-11-0)

[Detection in the High-Rate Regime](#page-14-0)

ITW 2010 **[High-Rate Quantization for NP Detection of HMM](#page-0-0)** 8/17

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト

Neyman-Pearson Test on Quantized Obervations

- Quantized observation: $Z_{N,k} = Q_N(Y_k)$
- The test becomes: *H*⁰ : *ZN*,1:*ⁿ* ∼ *p*0,*^N H*₁ : $Z_{N,1:n}$ ∼ $p_{1,N}$

Error exponent

$$
K_N = E_0 \left[\log \frac{p_{0,N}}{p_{1,N}} (Z_{N,0} | Z_{N,-\infty;-1}) \right]
$$

画

 $(1, 1, 2)$. $(1, 2)$. $(1, 2)$

Neyman-Pearson Test on Quantized Obervations

- Quantized observation: $Z_{N,k} = Q_N(Y_k)$
- \bullet The test becomes: *H*₀ : $Z_{N,1:n}$ ∼ $p_{0,N}$ *H*₁ : $Z_{N,1:n}$ ∼ $p_{1,N}$

Error exponent

$$
K_N = E_0 \left[\log \frac{p_{0,N}}{p_{1,N}} (Z_{N,0} | Z_{N,-\infty;-1}) \right]
$$

Our aim is to study the error exponent loss $K - K_N$

 \rightarrow [\[Gupta & Hero – 2003\]](#page-25-1) for i.i.d. observations.

 $(0.125 \times 10^{-14} \text{ m})$

Outline

[Detection from Unquantized Obervations](#page-5-0)

[Detection from Quantized Obervations](#page-11-0)

3 [Detection in the High-Rate Regime](#page-14-0)

ITW 2010 **[High-Rate Quantization for NP Detection of HMM](#page-0-0)** 10 / 17

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

High-Rate Quantization $(N \rightarrow \infty)$

Asymptotic regime: $n, N \rightarrow \infty$ but $n \gg N$

cf. [Bennett48], [Gray98]

 $(1,1) \times (1,1) \times (1,$

High-Rate Quantization $(N \rightarrow \infty)$

Asymptotic regime: $n, N \to \infty$ but $n \gg N$ *cf.* [Bennett48], [Gray98]

model point density ζ

≈ asymptotic number of cells in the neighborhood of *y*

In the high-rate regime:

number of quantization points in *A* $\frac{1}{N}$ ization points in \overline{A} \Rightarrow \int *A* ζ (*y*)*dy*

 $(0.125 \times 10^{-14} \text{ m})$

Main Result

Theorem (Asymptotic Error Exponent Loss)

$$
N^{2}(K - K_{N}) \xrightarrow[N \to \infty]{} D_{\zeta} = \frac{1}{24} \int \frac{p_{0}(y)F(y)}{\zeta(y)^{2}} dy
$$

where $F(y) = E_{0} \left[\left(\frac{\partial}{\partial y_{0}} \log \frac{p_{0}}{p_{1}} (Y_{-\infty;\infty}) \right)^{2} \middle| Y_{0} = y \right]$

Under some mixing conditions:

$$
\eta_m^{-1} \leq \frac{p_i(Y_0|Y_{-m'-1})}{p_i(Y_0|Y_{-m-1})} \leq \eta_m , \quad \eta_m^{-1} \leq \frac{p_{i,N}(Z_{N,0}|Z_{N,-m'-1})}{p_{i,N}(Z_{N,0}|Z_{N,-m-1})} \leq \eta_m
$$

$$
\left| \frac{\partial}{\partial y_0} \log p_i(Y_{0:k}|Y_{-\ell:-1}) - \frac{\partial}{\partial y_0} \log p_i(Y_{0:k}|Y_{-\ell'-1}) \right| \leq \varphi_\ell
$$

$$
\left| \frac{\partial}{\partial y_0} \log p_i(Y_k|Y_{-\ell:k-1}) \right| \leq \psi_k
$$

for $\log \eta_m = O(m^{-6-\varepsilon})$ and some summable φ_k and $\psi_k.$

 $\mathcal{A} \subseteq \mathcal{A} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A}$

Key Ideas of the Proof

• Inversion of two limits:

$$
\lim_{N \to \infty} N^2 (K - K_N)
$$
\n
$$
= \lim_{N \to \infty} \lim_{m \to \infty} N^2 E_0 \left[\log \frac{p_0}{p_1} (Y_0 | Y_{-m:-1}) - \log \frac{p_{0,N}}{p_{1,N}} (Z_{N,0} | Z_{N,-m:-1}) \right]
$$
\n
$$
= \lim_{m \to \infty} \lim_{N \to \infty} N^2 E_0 \left[\log \frac{p_0}{p_1} (Y_0 | Y_{-m:-1}) - \log \frac{p_{0,N}}{p_{1,N}} (Z_{N,0} | Z_{N,-m:-1}) \right]
$$

Taylor-Lagrange expansion of densities: $\frac{p_{0,N}}{p_{1,N}}\approx \frac{p_0}{p_1}$ $\frac{p_0}{p_1}$ as $N \rightarrow \infty$

Main issue:

Find relevant estimates of the remainders in *m*, *N*.

 \rightarrow Mixing conditions are needed.

 $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

Detection of a Gaussian AR-1 Process in Noise

State :

$$
X_k = aX_{k-1} + \sqrt{1 - a^2} U_k
$$

 $a \in (0,1)$: correlation coefficient $U_k \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$: innovation

Observation :

$$
H_0: Y_k = W_k
$$

$$
H_1: Y_k = X_k + W_k
$$

 $(0.8, 0.00)$ (0.000) (0.000)

 $W_k \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$: obs. noise

- 三

Detection of a Gaussian AR-1 Process in Noise

State :

$$
X_k = aX_{k-1} + \sqrt{1 - a^2} U_k
$$

 $a \in (0,1)$: correlation coefficient $U_k \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$: innovation

Observation :

 $H_0: Y_k = W_k$ H_1 : $Y_k = X_k + W_k$

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$

 $W_k \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$: obs. noise

Detection of a Gaussian AR-1 Process in Noise

State :

$$
X_k = aX_{k-1} + \sqrt{1 - a^2} U_k
$$

 $a \in (0,1)$: correlation coefficient $U_k \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$: innovation

0.4 4.5 $\cdots \cdots p_n(y)$ uniform 0.35 $-$ p.(v) optimal i.i.d. optimal d -optima 36 0.3 0.25 2.5 0.2 ď 0.15 1.5 01 0.05 0.5 $\frac{1}{0}$ $2\frac{6}{10}$ -2 0 $\overline{2}$ 6 8 10 $0₁$ 02 0.3 $0₄$ 0.5 0.6 07 0.8 0.9 Probability and model point densities $(\sigma = 1)$ *D_ζ* = *f*(*a*) for different quantization strategies ($\sigma = 1$) $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ Ω

Observation :

 $H_0: Y_k = W_k$ H_1 : $Y_k = X_k + W_k$

 $W_k \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$: obs. noise

ITW 2010 **[High-Rate Quantization for NP Detection of HMM](#page-0-0)** 14 / 17

Conclusion

- Neyman-Pearson test on quantized observations \rightarrow *n* sensors, quantization on $\log_2(N)$ bits
- Evaluation of the performance:

$$
\beta_n(\alpha) \approx e^{-n\left(K - \frac{D}{N^2}\right)}
$$

for large n, N and $n \gg N$.

- Optimal quantization rule
- \rightarrow Valid for a wide class of stationary mixing processes

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$

Ongoing Work: Vector Quantization (to be sub. to ISIT2010)

Vector-valued process: $Y_k \in \mathsf{Y} \subset \mathbb{R}^d$

Theorem (Asymptotic Error Exponent Loss) Under some mixing conditions:

$$
N^{2/d}(K-K_N)\xrightarrow[N\to\infty]{} D_e=\frac{1}{2}\int\frac{p_0(y)F(y)}{\zeta(y)^{2/d}}dy,
$$

where
$$
F(y) = \mathbb{E}_0 \left[\nabla_{y_0} \log \frac{p_0}{p_1} (Y_{-\infty;\infty})^\mathsf{T} M(Y_0) \nabla_{y_0} \log \frac{p_0}{p_1} (Y_{-\infty;\infty}) \middle| Y_0 = y \right]
$$

Ongoing Work: Vector Quantization (to be sub. to ISIT2010)

Vector-valued process: $Y_k \in \mathsf{Y} \subset \mathbb{R}^d$

Theorem (Asymptotic Error Exponent Loss) Under some mixing conditions:

$$
N^{2/d}(K-K_N)\xrightarrow[N\to\infty]{} D_e=\frac{1}{2}\int\frac{p_0(y)F(y)}{\zeta(y)^{2/d}}dy,
$$

where
$$
F(y) = \mathbb{E}_0 \left[\nabla_{y_0} \log \frac{p_0}{p_1} (Y_{-\infty;\infty})^\mathsf{T} M(Y_0) \nabla_{y_0} \log \frac{p_0}{p_1} (Y_{-\infty;\infty}) \middle| Y_0 = y \right]
$$

M is the model covariation profile:

- a matrix-valued function...
- ... which provides information about the shape of the cells

Thank you for your attention.

ITW 2010 **[High-Rate Quantization for NP Detection of HMM](#page-0-0)** 17/17

重

イロトス 伊 トス ミトス ミト