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Introduction Detection in Wireless Sensor Networks

Context

a physical phenomenon
with space correlation °
» SOMe sensors ,”/////55
= a fusion center \\\\\\@”"""“'
~ wireless channels v
([ ]

— quantization

Goal: detection from quantized observations
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Introduction Detection in Wireless Sensor Networks

Context

a physical phenomenon
with space correlation °

» SOMe Sensors o,,,,”/w/
= a fusion center \ Wi o
~ wireless channels N
— quantization ¢

Goal: detection from quantized observations

Questions:
@ performance of the Neyman-Pearson test?

@ best quantization?
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Introduction Detection in Wireless Sensor Networks

@ Neyman-Pearson test on quantized observations
n Sensors

quantization on log,(N) bits

@ Evaluation of the performance:

for large n,N and n > N.
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Introduction Detection in Wireless Sensor Networks

@ Neyman-Pearson test on quantized observations
n Sensors

quantization on log,(N) bits

@ Evaluation of the performance:

for large n,N and n > N.

Our aims:
Evaluate the loss D due to quantization

Find the best quantization rule
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Detection from Unquantized Obervations

Outline

0 Detection from Unquantized Obervations
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Detection from Unquantized Obervations Hypothesis Testing

Neyman-Pearson Hypothesis Testing

@ Yy, =(Y;...Y,): astationary real-valued
Lebesgue-dominated process with mixing properties

@ Binarytest Hp: Y., ~po
Hy: Y1~ p1
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Detection from Unquantized Obervations Hypothesis Testing

Neyman-Pearson Hypothesis Testing

@ Yy, =(Y;...Y,): astationary real-valued
Lebesgue-dominated process with mixing properties

@ Binarytest Hp: Y., ~po
Hy: Y1~ p1

Neyman-Pearson strategy :
@ set Py, (decide H) =a false alarm
@ minimize Py, (decide Hy) — B.(a) miss

Hy
S . 1
Likelihood Ratio Test: L, = flog@(Yl;n) Z M
n P1
H
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Detection from Unquantized Obervations Stein’s Lemma Generalization

Error Exponent

Our aim is to measure the detection performance. ]

@ B,(a) is a good performance measure . ..
@ ...but is not tractable

— asymptotic regime n — oo
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Detection from Unquantized Obervations Stein’s Lemma Generalization

Error Exponent

Our aim is to measure the detection performance. J

@ B,(a) is a good performance measure . ..
@ ...but is not tractable

— asymptotic regime n — oo
Lemma (Stein — Chen)

If 3K >0 such thatL, Ak under Hy then

1
Voe(0,1) ,,E‘&;logﬁn(o‘) =—K

K is the error exponent of the test: fB,(a) ~ exp(—nK)
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Detection from Unquantized Obervations Error Exponent

Error Exponent for Unquantized Observations (n — )

Under a certain mixing condition on p;

(e.g. valid for a wide class of hidden Markov models)

Shannon-McMillan-Breiman—like result
The LLR L, converges under Hy to

K=E, loglljf(l)(Ydeoo:—l)

K'is the error exponent of the NP test.
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Detection from Quantized Obervations

Outline

e Detection from Quantized Obervations
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Detection from Quantized Obervations Error Exponent for Quantized Observations

Neyman-Pearson Test on Quantized Obervations

@ Quantized observation: Zy = Oy (Y)
@ The test becomes:  Hy:Zy 1.0 ~ pon
Hy:Zyinw~piN

Error exponent

Ky = Ey long’N
p

(Zno|ZN,—e0:-1)

5
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Detection from Quantized Obervations Error Exponent for Quantized Observations

Neyman-Pearson Test on Quantized Obervations

@ Quantized observation: Zy = Oy (Y)
@ The test becomes:  Hy:Zy 1.0 ~ pon
Hy:Zyinw~piN

Error exponent

Ky = Ey logpo’N
p

(Zno|ZN,—e0:-1)

5

Our aim is to study the error exponent loss K — Ky

— [Gupta & Hero — 2003] for i.i.d. observations.
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Outline

e Detection in the High-Rate Regime
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High-Rate Quantization (N — )

Asymptotic regime: n,N —o but n>N
cf. [Bennett48], [Gray98]
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High-Rate Quantization (N — )

Asymptotic regime: n,N —o but n>N
cf. [Bennett48], [Gray98]

model point density {

~ asymptotic number of cells in the neighborhood of y

In the high-rate regime:

number of quantization points in A

. = [ cO)dy
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Main Result
Theorem (Asymptotic Error Exponent Loss)

1L [po(y)F(y)
2K_K D, — — [PoOWIVY)
W N) Now 57 24

C(y)?

YO:)’}

dy

2
where F(y) = Ey [<3y0 log? B (Yoo w))

Under some mixing conditions:

n, pi (Yo “Y—m’ 1)) N ’M
m — YolY_ — k)
PilYo[X —m:—1

nm - PxN(ZNolzN —m:—1) < M
TyOIOgPi(YO:k‘Y—Z’:—l) < @
|5 logpi(VelY-ex1)| <

‘a—mlogpi(YoﬂY,g:,l)—

for log N, = O(m°—%) and some summable ¢ and ;.
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High-Rete Quartization
Key ldeas of the Proof

@ Inversion of two limits:
lim N*(K — K
NV (K~ i)

= lim lim N’E, [logpo(Yo|Y, ,1)—10g (ZN0|ZN m,l)}

N—yoo m—roo

9
= lim lim N2E0 [IOgPO(Y0|Y_ _1)—10gp0N(ZN0‘ZN m—l)}

m—oo N—roo

@ Taylor-Lagrange expansion of densities: ”‘:—x ~ ’;—‘1’ as N — oo
Main issue:

Find relevant estimates of the remainders in m, N.
— Mixing conditions are needed.

ITW 2010 High-Rate Quantization for NP Detection of HMM 13/17



Detection of a Gaussian AR-1 Process in Noise

State : Observation :

Xk:anfl—f-\/l—azUk Hy: Y, =W,
H : Y.=X.+W;

iid.
~

a € (0,1): correlation coefficient Wy "% N(0,62): obs. noise

Uy "5 N(0,1): innovation
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iid.
~
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Detection of a Gaussian AR-1 Process in Noise

State : Observation :

Xk:anfl—f-\/l—azUk Hy: Y, =W,
H : Y.=X.+W;
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Uy "5 N(0,1): innovation
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Conclusion

@ Neyman-Pearson test on quantized observations
— n sensors, quantization on log, (V) bits

@ Evaluation of the performance:

for large n,N and n > N.
@ Optimal quantization rule

— Valid for a wide class of stationary mixing processes
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Ongoing Work: Vector Quantization (to be sub. to ISIT2010)

Vector-valued process: Y, € Y Cc R¢

Theorem (Asymptotic Error Exponent Loss)
Under some mixing conditions:
L [poOWFO)
2/d (1 _ _ L [P0y

where F(y) = Eo [ %, 10g 2 (Y—xe) "M (¥o) Y log 2 (Vi) | Yo =]
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Ongoing Work: Vector Quantization (to be sub. to ISIT2010)

Vector-valued process: Y, € Y Cc R¢

Theorem (Asymptotic Error Exponent Loss)
Under some mixing conditions:
F
POIFD)

1
2/d (g — - [ 20T V)
N7%(K —Ky) %N_m D, > / 20V ly

where F(y) = Eo [ %, 10g 2 (Y—xe) "M (¥o) Y log 2 (Vi) | Yo =]

M is the model covariation profile:
@ a matrix-valued function. ..
@ ...which provides information about the shape of the cells
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The End...

Thank you for your attention.
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