High-Rate Quantization for the Neyman-Pearson Detection of Hidden Markov Processes

Joffrey Villard¹, Pascal Bianchi², Eric Moulines² and Pablo Piantanida¹

¹SUPELEC, Telecom. Dpt., Gif-sur-Yvette, France

²LTCI Telecom ParisTech, Paris, France

ITW 2010

ITW 2010

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

High-Rate Quantization for NP Detection of HMM

Context

- a physical phenomenon with space correlation
- some sensors
- a fusion center
- wireless channels
 - \rightarrow quantization

イロト イポト イヨト イヨト

Goal: detection from quantized observations

High-Rate Quantization for NP Detection of HMM

Context

- a physical phenomenon with space correlation
- some sensors
- a fusion center
- wireless channels
 → quantization

< ロ > < 同 > < 回 > < 回 >

Goal: detection from quantized observations

Questions:

- performance of the Neyman-Pearson test?
- best quantization?

Neyman-Pearson test on quantized observations
 n sensors
 quantization on log₂(*N*) bits

• Evaluation of the performance:

$$P_e \approx e^{-n\left(K - \frac{D}{N^2}\right)}$$

for large n, N and $n \gg N$.

イロト 不得 トイヨト イヨト

Neyman-Pearson test on quantized observations
 n sensors
 quantization on log₂(N) bits

• Evaluation of the performance:

$$P_e \approx e^{-n\left(K - \frac{D}{N^2}\right)}$$

for large n, N and $n \gg N$.

Our aims:

Evaluate the loss *D* due to quantization

Find the best quantization rule

イロト イポト イヨト イヨト

Outline

Detection from Unquantized Obervations

- 2 Detection from Quantized Obervations
- Oetection in the High-Rate Regime

Neyman-Pearson Hypothesis Testing

Y_{1:n} = (Y₁...Y_n): a stationary real-valued
 Lebesgue-dominated process with mixing properties

• Binary test
$$H_0: Y_{1:n} \sim p_0$$

 $H_1: Y_{1:n} \sim p_1$

- 日本 - 4 国本 - 4 国本 - 4 国本

Neyman-Pearson Hypothesis Testing

Y_{1:n} = (Y₁...Y_n): a stationary real-valued
 Lebesgue-dominated process with mixing properties

• Binary test
$$H_0: Y_{1:n} \sim p_0$$

 $H_1: Y_{1:n} \sim p_1$

Neyman-Pearson strategy :

- set $P_{H_0}(\text{decide } H_1) = \alpha$ false alarm
- minimize $P_{H_1}(\text{decide } H_0) \rightarrow \beta_n(\alpha)$ miss

Likelihood Ratio Test :
$$L_n = \frac{1}{n} \log \frac{p_0}{p_1}(Y_{1:n}) \stackrel{H_0}{\underset{H_1}{\gtrless}} \lambda_n$$

イロト イポト イヨト イヨト

Error Exponent

Our aim is to measure the detection performance.

- $\beta_n(\alpha)$ is a good performance measure . . .
- ... but is not tractable
- \rightarrow asymptotic regime $n \rightarrow \infty$

Error Exponent

Our aim is to measure the detection performance.

- β_n(α) is a good performance measure . . .
- ... but is not tractable
- \rightarrow asymptotic regime $n \rightarrow \infty$

Lemma (Stein - Chen)

If $\exists K > 0$ such that $L_n \xrightarrow{P} K$ under H_0 then

$$\forall \alpha \in (0,1)$$
 $\lim_{n \to +\infty} \frac{1}{n} \log \beta_n(\alpha) = -K$

K is the error exponent of the test: $\beta_n(\alpha) \approx \exp(-nK)$

High-Rate Quantization for NP Detection of HMM

Error Exponent for Unquantized Observations $(n \rightarrow \infty)$

Under a certain mixing condition on p_1

(e.g. valid for a wide class of hidden Markov models)

Shannon-McMillan-Breiman–like result The LLR L_n converges under H_0 to

$$K = E_0 \left[\log \frac{p_0}{p_1} (Y_0 | Y_{-\infty:-1}) \right]$$

K is the error exponent of the NP test.

イロト イヨト イヨト イヨト

Outline

Detection from Unquantized Obervations

2 Detection from Quantized Obervations

3 Detection in the High-Rate Regime

イロト イポト イヨト イヨト

Neyman-Pearson Test on Quantized Obervations

- Quantized observation: $Z_{N,k} = Q_N(Y_k)$
- The test becomes: $H_0: Z_{N,1:n} \sim p_{0,N}$ $H_1: Z_{N,1:n} \sim p_{1,N}$

Error exponent

$$K_N = E_0 \left[\log \frac{p_{0,N}}{p_{1,N}} (Z_{N,0} | Z_{N,-\infty;-1}) \right]$$

3

くロン 不得 とくほ とくほう

Neyman-Pearson Test on Quantized Obervations

- Quantized observation: $Z_{N,k} = Q_N(Y_k)$
- The test becomes: $H_0: Z_{N,1:n} \sim p_{0,N}$ $H_1: Z_{N,1:n} \sim p_{1,N}$

Error exponent

$$K_N = E_0 \left[\log \frac{p_{0,N}}{p_{1,N}} (Z_{N,0} | Z_{N,-\infty:-1}) \right]$$

Our aim is to study the error exponent loss $K - K_N$

 \rightarrow [Gupta & Hero – 2003] for i.i.d. observations.

3

イロト 不得 トイヨト イヨト

Outline

Detection from Unquantized Obervations

2 Detection from Quantized Obervations

Detection in the High-Rate Regime

イロト 不得 トイヨト イヨト

High-Rate Quantization $(N \rightarrow \infty)$

Asymptotic regime: $n, N \rightarrow \infty$ but $n \gg N$ cf. [Bennett48], [Gray98]

High-Rate Quantization $(N \rightarrow \infty)$

Asymptotic regime: $n, N \rightarrow \infty$ but $n \gg N$ cf. [Bennett48], [Gray98]

model point density ζ

 \approx asymptotic number of cells in the neighborhood of y

In the high-rate regime:

 $\frac{\text{number of quantization points in } A}{N} \Rightarrow \int_{A} \zeta(y) \, dy$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Main Result

Theorem (Asymptotic Error Exponent Loss)

$$N^{2}(K - K_{N}) \xrightarrow[N \to \infty]{} D_{\zeta} = \frac{1}{24} \int \frac{p_{0}(y)F(y)}{\zeta(y)^{2}} dy$$

where $F(y) = E_{0} \left[\left(\frac{\partial}{\partial y_{0}} \log \frac{p_{0}}{p_{1}}(Y_{-\infty;\infty}) \right)^{2} \mid Y_{0} = y \right]$

Under some mixing conditions:

$$\begin{split} \eta_m^{-1} &\leq \frac{p_i(Y_0|Y_{-m':-1})}{p_i(Y_0|Y_{-m:-1})} \leq \eta_m \ , \quad \eta_m^{-1} \leq \frac{p_{i,N}(Z_{N,0}|Z_{N,-m':-1})}{p_{i,N}(Z_{N,0}|Z_{N,-m:-1})} \leq \eta_m \\ \left| \frac{\partial}{\partial y_0} \log p_i(Y_{0:k}|Y_{-\ell:-1}) - \frac{\partial}{\partial y_0} \log p_i(Y_{0:k}|Y_{-\ell':-1}) \right| \leq \varphi_\ell \\ \left| \frac{\partial}{\partial y_0} \log p_i(Y_k|Y_{-\ell:k-1}) \right| \leq \psi_k \end{split}$$

for $\log \eta_m = O(m^{-6-\varepsilon})$ and some summable φ_k and ψ_k .

イロン 不良 とくほう イロン・ほ

Key Ideas of the Proof

• Inversion of two limits:

$$\begin{split} \lim_{N \to \infty} N^2(K - K_N) \\ &= \lim_{N \to \infty} \lim_{m \to \infty} N^2 E_0 \left[\log \frac{p_0}{p_1}(Y_0 | Y_{-m:-1}) - \log \frac{p_{0,N}}{p_{1,N}}(Z_{N,0} | Z_{N,-m:-1}) \right] \\ &\stackrel{?}{=} \lim_{m \to \infty} \lim_{N \to \infty} N^2 E_0 \left[\log \frac{p_0}{p_1}(Y_0 | Y_{-m:-1}) - \log \frac{p_{0,N}}{p_{1,N}}(Z_{N,0} | Z_{N,-m:-1}) \right] \end{split}$$

• Taylor-Lagrange expansion of densities: $\frac{p_{0,N}}{p_{1,N}} \approx \frac{p_0}{p_1}$ as $N \to \infty$

Main issue:

Find relevant estimates of the remainders in m, N.

 \rightarrow Mixing conditions are needed.

イロト イポト イヨト イヨト

Detection of a Gaussian AR-1 Process in Noise

State :

$$X_k = aX_{k-1} + \sqrt{1 - a^2} U_k$$

 $a \in (0,1)$: correlation coefficient $U_k \overset{i.i.d.}{\sim} \mathcal{N}(0,1)$: innovation

Observation :

 $H_0: Y_k = W_k$ $H_1: Y_k = X_k + W_k$

 $W_k \overset{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$: obs. noise

<ロ> <用> <用> < => < => < => < => <000</p>

Detection of a Gaussian AR-1 Process in Noise

$$X_k = aX_{k-1} + \sqrt{1 - a^2} \, U_k$$

 $a \in (0,1)$: correlation coefficient $U_k \overset{i.i.d.}{\sim} \mathcal{N}(0,1)$: innovation

Observation:

$$H_0: Y_k = W_k$$

 $H_1: Y_k = X_k + W_k$

イロト イポト イヨト イヨト

 $W_k \overset{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$: obs. noise

High-Rate Quantization for NP Detection of HMM

Detection of a Gaussian AR-1 Process in Noise

$$X_k = aX_{k-1} + \sqrt{1 - a^2} U_k$$

 $a \in (0,1)$: correlation coefficient $U_k \overset{i.i.d.}{\sim} \mathcal{N}(0,1)$: innovation

Observation :

 $H_0: Y_k = W_k$ $H_1: Y_k = X_k + W_k$

 $W_k \overset{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$: obs. noise

ITW 2010

State :

High-Rate Quantization for NP Detection of HMM

Conclusion

- Neyman-Pearson test on quantized observations
 → n sensors, quantization on log₂(N) bits
- Evaluation of the performance:

$$\beta_n(\alpha) \approx e^{-n\left(K-\frac{D}{N^2}\right)}$$

for large n, N and $n \gg N$.

- Optimal quantization rule
- $\rightarrow\,$ Valid for a wide class of stationary mixing processes

Ongoing Work: Vector Quantization (to be sub. to ISIT2010)

Vector-valued process: $Y_k \in \mathsf{Y} \subset \mathbb{R}^d$

Theorem (Asymptotic Error Exponent Loss) Under some mixing conditions:

$$N^{2/d}(K-K_N) \xrightarrow[N\to\infty]{} D_e = \frac{1}{2} \int \frac{p_0(y)F(y)}{\zeta(y)^{2/d}} dy ,$$

where
$$F(y) = \mathbb{E}_0 \left[\nabla_{y_0} \log \frac{p_0}{p_1} (Y_{-\infty;\infty})^\mathsf{T} M(Y_0) \nabla_{y_0} \log \frac{p_0}{p_1} (Y_{-\infty;\infty}) \middle| Y_0 = y \right]$$

イロト イポト イモト イモト

Ongoing Work: Vector Quantization (to be sub. to ISIT2010)

Vector-valued process: $Y_k \in \mathsf{Y} \subset \mathbb{R}^d$

Theorem (Asymptotic Error Exponent Loss) Under some mixing conditions:

$$N^{2/d}(K-K_N) \xrightarrow[N\to\infty]{} D_e = \frac{1}{2} \int \frac{p_0(y)F(y)}{\zeta(y)^{2/d}} dy ,$$

where
$$F(y) = \mathbb{E}_0 \left[\nabla_{y_0} \log \frac{p_0}{p_1} (Y_{-\infty;\infty})^\mathsf{T} M(Y_0) \nabla_{y_0} \log \frac{p_0}{p_1} (Y_{-\infty;\infty}) \middle| Y_0 = y \right]$$

M is the model covariation profile:

- a matrix-valued function...
- ... which provides information about the shape of the cells

イロト イポト イモト イヨト

Thank you for your attention.

High-Rate Quantization for NP Detection of HMM

2

ヘロト 人間 トイヨト イヨト