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Abstract

This paper investigates the effect of quantization on the performance of the Neyman-Pearson test. It

is assumed that a sensing unit observes samples of a correlated stationary ergodic multivariate process.

Each sample is passed through an N -point quantizer and transmitted to a decision device which performs

a binary hypothesis test. For any false alarm level, it is shown that the miss probability of the Neyman-

Pearson test converges to zero exponentially as the number of samples tends to infinity, assuming that the

observed process satisfies certain mixing conditions. The main contribution of this paper is to provide a

compact closed-form expression of the error exponent in the high-rate regime i.e., when the number N

of quantization levels tends to infinity, generalizing previous results of Gupta and Hero to the case of

non-independent observations. If d represents the dimension of one sample, it is proved that the error

exponent converges at rate N2/d to the one obtained in the absence of quantization. As an application,

relevant high-rate quantization strategies which lead to a large error exponent are determined. Numerical

results indicate that the proposed quantization rule can yield better performance than existing ones in

terms of detection error.
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I. INTRODUCTION

Consider a sensing unit which transmits a sequence of measurements to a decision device (DD)

whose mission is to detect a given signal. For example, a CCTV camera in a surveillance system

transmits its data to a remote controller interested in the detection of a particular object in its

field of view. This situation also arises in the context of wireless sensor networks (WSN) where

a fusion center collects the individual measurements of a large number of identical sensors and

processes these measurements in order to detect abnormal events [1], [2]. In such applications,

due to bandwidth, delay or storage limitations, transmitted data rates are often limited. Therefore,

measurements must be quantized prior to transmission. As a matter of fact, this quantization step

may severely degrade the overall detection performance of the system.

In this paper, we consider that a binary hypothesis test is performed at the DD. The available

data set corresponds to a quantized version of a stationary ergodic discrete-time multivariate

process. Our aim is to quantify the detection performance of a given quantizer and characterize

quantization strategies which guarantee attractive performance at the DD.

In the past decades, numerous papers were dedicated to the search for relevant quantization

strategies and their practical design [3]. The most popular criterion used to select quantizers is the

mean square error (MSE) between the quantized signal and the initial source [4]. An analytical

characterization of quantizers minimizing the MSE is difficult in the general case. Bennett [5]

pioneered the study of high-rate (or high-resolution) quantization for the reconstruction of

scalar signals. The idea of Bennett was to study the MSE in the asymptotic regime where

the number of quantization levels tends to infinity. A closed form expression of the (properly

normalized) MSE can be determined in that case, and the families of quantizers minimizing the

asymptotic MSE can be directly characterized. Extension of the work of Bennett to vector-valued

observations was later achieved in [6]. However, the MSE criterion is especially relevant when

the aim is to reconstruct the source. On the other hand, it can be inappropriate as far as other

applications are concerned. For this reason, various distortion measures have been proposed in

the literature in a task-oriented setting for estimation, classification and detection [7]–[18]. In

particular, considerable attention has been paid to optimal quantization for hypothesis testing.

Poor and Thomas [12] used Ali-Silvey distances between densities. Later, Poor [13] proposed the

generalized f -divergence and studied this distortion measure in the high-rate regime. Picinbono
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and Duvaut [14] considered a deflection criterion and proved that the corresponding optimal

procedure corresponds to the scalar quantization of the likelihood ratio. Tsitsiklis [15] studied

the properties of such quantizers with respect to several distortion measures. More recently,

following the initial works of Tenney and Sandell [16] and Tsitsiklis [17], Gupta and Hero [18]

investigated the selection of high-rate quantizers for binary hypothesis tests. In their setting, the

decision device gathers a sequence of n independent and identically distributed (i.i.d.) variables,

each of these variables being passed through a fixed quantizer. The probability density function

(pdf) of the samples is assumed to be known both under the null hypothesis and the alternative.

In this case, it is well known that a uniformly most powerful test is obtained by the Neyman-

Pearson (NP) procedure which consists in rejecting the null hypothesis when the log-likelihood

ratio (LLR) exceeds a certain threshold [19]. The threshold is usually chosen in such a way

that the probability of false alarm of the test (that is, the probability to decide the alternative

under the null hypothesis) is fixed to a specified level, say α. The performance of the NP test of

level α can be evaluated in terms of the miss probability (that is, the probability to decide the

null hypothesis under the alternative). In our case, the miss probability clearly depends on the

quantizer used by the sensing unit. Thus, a natural approach would be to select the quantizer

which minimizes the miss probability. Unfortunately, the miss probability does not admit any

tractable expression as a function of the quantizer. To circumvent this issue, it is convenient to

study the miss probability in the case where the number n of available snapshots tends to infinity.

In case of i.i.d. observations, the celebrated Stein’s lemma [20] states that the miss probability

tends to zero exponentially in n. Based on this result, it is relevant to select the quantizers which

yield a large value of the error exponent. Unfortunately, the maximization of the error exponent

as a function of the quantizer is impractical. Following the idea of [5], [6], Gupta and Hero

restrict their attention to high-rate quantizers and manage to obtain a compact expression of the

error exponent loss induced by quantization.

Most of these works address the case where observations are independent random variables.

However, the detection of a correlated process is a crucial issue in many applications [21]–[24].

In this case, fewer results are available in the literature. Chamberland and Veeravalli [21] analyze

the impact of the density of sensors in a WSN on the detection performance, when observations

are correlated. Willett et al. [22] study the one-bit quantization of a pair of dependent Gaussian

random variables. In case of the detection of a Gauss-Markov signal in noise, Sung et al. [23]
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prove that for a fixed false alarm level, the miss probability of the NP test converges exponentially

to zero, and provide a closed form expression of the error exponent. Hachem et al. [24] later

extended the results of [23] to irregularly sampled Gaussian diffusion processes. However, [23],

[24] assume that the DD has a perfect access to the observations of the sensing unit, and do not

address quantization issues.

In this paper, we study the performance of the Neyman-Pearson test based on a quantized

version of a stationary ergodic multivariate process. We generalize the work of Gupta and

Hero [18] to the case where the observed process is non-i.i.d. (either under the null hypothesis,

the alternative, or both). In this situation, Stein’s lemma does not directly apply. The error

exponent does no longer admit a closed-form expression and the determination of relevant

quantizers is therefore a more difficult task. Provided that the process of interest satisfies

certain forgetting properties (present observations should become nearly independent of past

observations after a sufficient amount of time), we prove that the miss probability of the NP

test of level α tends exponentially to zero as the number of observations tends to infinity. Our

main contribution is to provide a compact closed form expression of the error exponent in

case of high-rate quantizers. If N denotes the number of quantization levels (or equivalently

if each measurement is quantized on log2(N) bits), we prove that the error exponent achieved

when using quantized observations converges as N tends to infinity to the ideal error exponent

that one would obtain if perfect/unquantized measurements were available at the DD. More

precisely, we prove that the error exponent loss tends to zero at speed N−2/d where d represents

the dimension of each individual measurement. The asymptotic error exponent depends on the

process distributions under both hypotheses. It also depends on the quantization strategy through

the so-called model point density and model covariation profile. The model point density can be

interpreted as the asymptotic density of cells in the neighborhood of each point of the observation

space. The model covariation profile captures the shape of the cells. As a consequence, the

selection of relevant high-rate quantizers reduces to the determination of the point densities and

covariation profiles minimizing the asymptotic error exponent loss. In case of scalar quantization

(d = 1), our compact expression immediately yields a simple characterization of optimal high-

rate quantizers. In case of vector quantization (d ≥ 2), an exact characterization of optimal

quantizers is more difficult. Following the approach of [18] once again, we nevertheless determine

relevant families of quantizers with attractive error exponent. Note that our theoretical results
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hold under the assumption that the observed process “forgets” past observations fast enough. As

a special case, we prove that our assumptions hold for a general class of hidden Markov models

verifying a certain contraction property. Numerical illustrations are provided in the case where

the measurements correspond to a modulated signal in the In-phase/Quadrature plane.

The paper is organized as follows. In Section II, we describe the observation model. We

also review some known results on Neyman-Pearson tests and we derive the associated error

exponent in the ideal case where the DD has perfect access to the measurements. The vector

quantization framework is introduced in Section III. In Section IV, the impact of quantization

on the error exponent is evaluated in the high-rate regime. We determine relevant quantization

strategies allowing to reduce this degradation. Section V is devoted to the proof of the main

result. In Section VI, we illustrate our findings in the special case of hidden Markov processes

and give sufficient conditions on the transition and observation kernels ensuring that our results

apply. Section VII is dedicated to numerical illustrations.

Notation

For any sequence (yi)i∈Z, for any integers k ≤ `, notation yk:` stands for the collection

(yk, yk+1, . . . , y`) and notation yZ is used to designate the whole sequence. If y is a vector with

dimension d, we denote by y(i) its i-th component and ‖y‖ its Euclidean norm. We denote by

‖A‖ the spectral norm of any square matrix A. Notation .T stands for the transpose operator.

A real-valued function f : yk:` 7→ f(yk:`) on S ⊂ Rd × · · · × Rd is said to be of class C3

on S if it is three times continuously differentiable on S. We denote by ∇ymf(yk:`) its gradient

w.r.t. ym at point yk:`. When no variable is specified, ∇g(y) simply denotes the (d-dimensional)

gradient of the real-valued single-variable function y 7→ g(y) defined on Y ⊂ Rd. We define the

Hessian matrix of f by
[
∇2
ym,ynf

]
i,j

= ∂2f

∂y
(i)
m ∂y

(j)
n

for all i, j ∈ {1, . . . , d}. Moreover, notation ∇2
ym

stands for ∇2
ym,ym .

Notation B(X) stands for the Borel σ-field on X. Notation σ(Y1:n) stands for the sub-σ-field

of B(YZ), associated with the random vector Y1:n. Notation P−−−→
n→∞

stands for the convergence

in probability as n → ∞. Notation
Lr(P0)−−−−→
n→∞

stands for the convergence in the Lr-norm w.r.t.

probability P0.

Notation ◦ stands for the composition operator i.e., for any arbitrary functions f and g,

f ◦ g(x) = f(g(x)). Notation oN(·) is a little-o notation as N tends to infinity.
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II. NEYMAN-PEARSON DETECTION WITH PERFECT OBSERVATIONS

A. Observation Model

Consider two probability measures P0 and P1 on a relevant probability space. Denote by

(Yk)k∈Z a stationary ergodic process for both P0 and P1, taking its values in a bounded convex

subset Y of Rd. We associate an hypothesis (H0 and H1 respectively) to each of the two

probability measures P0 and P1 and investigate the problem of the detection of H1 vs. H0

based on a set of n observations Y1:n = (Y1, . . . , Yn).

For each i ∈ {0, 1}, we assume that Pi is the probability distribution of the coordinate process

(Yk)k∈Z on the canonical space (YZ, B(YZ)). We denote by Pi,n the restriction of Pi to σ(Y1:n).

We denote by E0 and E1 the expectations associated with P0 and P1 respectively. We introduce

the reference measure µ which coincides with the d-dimensional Lebesgue measure restricted

to Y.

Assumption 1: The following properties hold true for each i ∈ {0, 1}.
1) For each n ≥ 1, Pi,n admits a density pi w.r.t. µ⊗n.

2) pi(y1:n) > 0 for each y1:n ∈ Yn.

3) E0 |log pi(Y0)| <∞.

The density pi of Pi,n depends of course on n, but we drop the index n to simplify the notation.

For each i ∈ {0, 1}, we also define pi(yn|y1:n−1) = pi(y1:n)/pi(y1:n−1) with the convention that

pi(yn|y1:n−1) = pi(yn) when n = 1 (that is, when y1:n−1 is a void vector). Assumption 1-2)

implies that both distributions P0,n and P1,n are absolutely continuous w.r.t. each other.

B. Likelihood Ratio Test

We now investigate the detection of H1 vs. H0 based on the perfect observation of n mea-

surements Y1:n. The log-likelihood ratio (LLR) writes:

Ln = log
p1(Y1:n)

p0(Y1:n)
. (1)

The NP test rejects the null hypothesis when Ln is larger than a threshold, say γ. For each

α ∈ (0, 1), we define the miss probability of the NP test of level α by:

βn(α) = inf P1 [Ln < γ] ,
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where the infimum is w.r.t. all γ such that the probability of false alarm does not exceed α i.e.,

γ s.t. P0 [Ln > γ] ≤ α .

For each n ≥ 1 and each α ∈ (0, 1), due to the celebrated Neyman-Pearson’s lemma, βn(α)

is the lowest achievable miss probability among all binary tests of level α which are based on

the observation of Y1:n. Quantity βn(α) is therefore a key metric in order to characterize the

performance of the hypothesis test. Unfortunately, it usually does not admit any tractable closed-

form expression. In the sequel, we study the asymptotic behaviour of βn(α) as the number of

observations n tends to infinity. In this regime, it can be shown that, under certain assumptions,

βn(α) ' exp(−nK) (2)

for some constant K given below, which we shall refer to as the error exponent.

C. Error Exponent with Perfect Observations

The evaluation of the error exponent K in Equation (2) fundamentally relies on the following

lemma:

Lemma 1 ( [25]): Assume that a binary test is performed on a sequence Y̌1:n = (Y̌1, . . . , Y̌n)

of n observed random variables. Denote by p̌0 and p̌1 the density of Y̌1:n under H0 and H1

respectively (w.r.t. any common reference measure). Assume that under H0,

1

n
log

p̌0(Y̌1:n)

p̌1(Y̌1:n)

P−−−→
n→∞

κ

for some deterministic constant κ such that 0 < κ ≤ ∞. Then, for any α ∈ (0, 1) the miss

probability βn(α) of the Neyman-Pearson test of level α is such that

lim
n→∞

1

n
log βn(α) = −κ .

Lemma 1 implies that the error exponent, if it exists, coincides with the limit in probability

(under P0) of −(1/n)Ln, where Ln is the LLR defined by (1). The existence of the error exponent

is directly obtained from the following assumption, which will be discussed later on.

Assumption 2: For each i ∈ {0, 1}, (log pi(Y0|Y−m:−1))m≥0 is a convergent sequence in

L1(P0).

We are now in position to study the limit of the LLR Ln and prove the following result, which

provides the general form of the error exponent.
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Theorem 1: Under Assumptions 1 and 2,

lim
n→∞

1

n
log βn(α) = −K ,

where K is the constant defined by

K = lim
m→∞

E0

[
log

p0

p1

(Y0|Y−m:−1)

]
. (3)

Proof: Using the chain rule, we first write Ln under the form:

Ln = −
n∑
k=1

log
p0

p1

(Yk|Y1:k−1) .

Denote by Υ the limit in L1(P0) of sequence (log p0

p1
(Y0|Y−m:−1))m≥0. The main point is the

study of the difference log p0

p1
(Yk|Y1:k−1)−Υ ◦ θk, where θ is the shift operator1. We can write:

E0

∣∣∣∣∣ 1n Ln +
1

n

n∑
k=1

Υ ◦ θk
∣∣∣∣∣ (a)

≤ 1

n

n∑
k=1

E0

∣∣∣∣log
p0

p1

(Yk|Y1:k−1)−Υ ◦ θk
∣∣∣∣

(b)

≤ 1

n

n∑
k=1

E0

∣∣∣∣log
p0

p1

(Y0|Y−k+1:−1)−Υ

∣∣∣∣ ,
where step (a) comes from the triangular inequality and step (b) is a consequence of the

stationarity of process (Yk)k∈Z under P0. The right-hand side of the above inequality can be

interpreted as a Cesàro mean and thus converges to zero by definition of Υ. We thus write:

− 1

n
Ln =

1

n

n∑
k=1

Υ ◦ θk + εn ,

where εn represents a term which converges in probability (under P0) to zero as n → ∞. As

P0 is stationary ergodic, we conclude using the ergodic theorem that −(1/n)Ln converges in

probability to E0(Υ) under P0. This result together with Lemma 1 proves Theorem 1.

Remark 1: Let us make some remarks on the above Assumptions 1 and 2. Assumption 1 is an

extension of those made by Gupta and Hero [18, Section III, pp. 1956]. Assumption 2 does not

appear in [18] since it is obviously verified by i.i.d. processes. In this case, Theorem 1 is known

1Recall that we are considering probability measures defined on the canonical space YZ. For any ω ∈ YZ, we may write ω =

(. . . , ω−1, ω0, ω1, . . . ). The kth-time shifted version of ω is then given by θkω = (. . . , ωk−1, ωk, ωk+1, . . . ). Notation Υ ◦ θk

represents the measurable function Υ ◦ θk(ω) = Υ(θkω) = Υ((. . . , ωk−1, ωk, ωk+1, . . . )). Recall that process YZ is defined as

the coordinate process i.e., Yn(ω) = ωn for each n. As a consequence, the measurable function log p0
p1

(Yk|Y1:k−1)−Υ ◦ θk at

point ω is equal to the measurable function log p0
p1

(Y0|Y−k+1:−1)−Υ at point θkω.
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as Stein’s lemma. Assumption 2 is trivially satisfied by short-dependent (m-dependent) processes

such as moving average processes for instance [26]. In this case, the present observation Y0 is

independent of past observations Y−m−1, Y−m−2, . . . as soon as m is large enough. As explained

in Section VI, Assumption 2 is as well satisfied by a wide class of hidden Markov models.

Remark 2: In order that (log p0(Y0|Y−m:−1))m≥0 is a convergent sequence in L1(P0), it is

sufficient to check that (E0 log p0(Y0|Y−m:−1))m≥0 is a bounded sequence. This claim is a con-

sequence of Moy [27] (see Theorem 4 therein). In practical situations, this remark provides us

with a convenient way to check whether Assumption 2 is verified for i = 0. On the other hand,

the validation of Assumption 2 for i = 1 generally requires more efforts in practice: One should

be able to prove that (log p1(Y0|Y−m:−1))m≥0 is a Cauchy sequence in L1(P0).

Remark 3: When P1 is a finite-order Markovian measure, Assumption 2 can be simply reduced

to the assumption that sequence (E0 log p0

p1
(Y0|Y−m:−1))m≥0 is bounded. Indeed, due to Moy [27],

this hypothesis directly implies the convergence of sequence (log p0

p1
(Y0|Y−m:−1))m≥0 in L1(P0)

and thus yields Theorem 1.

III. QUANTIZATION

A. Definitions

Consider a fixed integer N ≥ 2. An N -point quantizer is a triplet (CN ,ΞN , ξN) where CN =

{CN,1, . . . , CN,N} is a set of N cells (Borel sets of Y with non-zero volume) which form a

partition of Y, where ΞN = {ξN,1, . . . , ξN,N} is an arbitrary set of distinct elements and where

ξN : Y → ΞN is a function s.t. ξN(y) = ξN,j whenever y ∈ CN,j . For each N, k, we introduce

ZN,k = ξN(Yk) ,

the quantized measurement on log2(N) bits. We assume that the quantizer (CN ,ΞN , ξN) is known

at the decision device. The aim is to decide between hypotheses H0 and H1 based on the

observation of ZN,1:n.

Note that in our model, each individual measurement is quantized based on the same quan-

tization rule as in the traditional framework of vector-quantization [3]. It is also relevant in the

case of WSN when samples are collected using identical sensors.
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B. Error Exponent

Assume that the number of quantization levels N is fixed. For a given number n of quantized

observations, we define the LLR based on quantized measurements by:

Ln,N = log
p1,N (ZN,1:n)

p0,N (ZN,1:n)
,

where for each i ∈ {0, 1} and for any set of quantization points ξN,j1:n = (ξN,j1 , . . . , ξN,jn) ∈ Ξn
N ,

pi,N(ξN,j1:n) = Pi,n(CN,j1 × . . .× CN,jn)

is the probability that measurements Y1, . . . , Yn respectively fall into the cells CN,j1 , . . . , CN,jn

associated with the observed points ξN,j1 , . . . , ξN,jn (n.b. function pi,N depends on n, but we

omit the index n to simplify notation). We define similarly:

pi,N(ξN,jn|ξN,j1:n−1) =
pi,N(ξN,j1:n)

pi,N(ξN,j1:n−1)
.

For each α ∈ (0, 1), we denote by βn,N(α) the miss probability of the NP test of level α

when quantization is applied i.e., the infimum of P1 [Ln,N < γ] w.r.t. all γ s.t. P0 [Ln,N > γ] ≤ α.

The error exponent associated with βn,N(α) is provided by the following result, whose proof is

similar to the one of Theorem 1.

Corollary 1: Consider a fixed N ≥ 2. If Assumption 1 holds and if (log pi,N(ZN,0|ZN,−m:−1))m≥0

is a convergent sequence in L1(P0) for each i ∈ {0, 1} then,

lim
n→∞

1

n
log βn,N(α) = −KN ,

where KN is the constant defined by:

KN = lim
m→∞

E0

[
log

p0,N

p1,N

(ZN,0|ZN,−m:−1)

]
. (4)

The above result provides the error exponent KN associated with the NP test on quantized

observations. A natural question is: How does the choice of the quantizer affect the error

exponent? Unfortunately, the expression of the error exponent does not immediately allow

to evaluate the impact of the quantizer. In the sequel, we thus follow the approach of [6],

[18] and focus on the case where the order N of the quantizer tends to infinity. We refer to

such quantizers as high-rate quantizers. This approach leads to a convenient and informative

asymptotic expression of KN . In particular, it will be shown that, under some assumptions on

the process (Yk)k∈Z and the quantizers sequence (CN ,ΞN , ξN)N≥1, the above error exponent KN

converges to K as N tends to infinity.
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IV. PERFORMANCE OF HIGH-RATE VECTOR QUANTIZERS

A. Notation and Assumptions

For each N , we remark that the error exponent KN does not depend on the particular choice of

the quantization alphabet ΞN .2 For the sake of simplicity, we assume with no loss of generality

that3:

ξN,j =

∫
CN,j

y dy∫
CN,j

dy
,

i.e. each ξN,j coincides with the centroid of cell CN,j . We respectively define the volume and the

diameter of cell j by VN,j =
∫
CN,j

dy and dN,j = supu,v∈CN,j
‖u− v‖. We introduce the specific

point density ζN and the specific covariation profile MN as the piecewise constant functions on

Y respectively defined as follows, for any y ∈ CN,j (j ∈ {1, . . . , N}):

ζN(y) = ζN,j =
1

NVN,j
,

MN(y) = MN,j =
1

V
1+2/d
N,j

∫
CN,j

(y − ξN,j)(y − ξN,j)Tdy .

Now consider a family of quantizers (CN ,ΞN , ξN)N≥1. We make the following assumption.

Assumption 3: The following properties hold true.

1) As N →∞, ζN converges uniformly to a continuous function ζ such that infy∈Y ζ(y) > 0 .

2) As N → ∞, MN converges uniformly to a continuous (matrix-valued) function M such

that supy∈Y ‖M(y)‖ <∞ .

3) There exists a constant Cd such that, for all N , supj dN,j ≤
Cd
N1/d

.

We will refer to ζ as the model point density of the family (CN ,ΞN , ξN)N≥1. It represents the

fraction of cells in the neighborhood of a given point y. Function M will be referred to as the

model covariation profile. For each y ∈ Y, M(y) is a non-negative d×d matrix. In the literature,

function y 7→ Tr (M(y)) is usually referred to as the inertial profile [3], [6], [18]. Function M

provides information about the shape of the cells.

2The value of the log-likelihood ratio (and a fortiori the value of the error exponent) remains unchanged by any one-to-one

transformation of the quantized observations. Otherwise stated, the particular definition of the quantization alphabet has no

impact on the corresponding Neyman-Pearson test provided that the latter quantization alphabet is composed by N distinct

elements.
3The ith component of ξN,j is defined as ξ(i)

N,j ,
(∫

CN,j
y(i) dy

)
/
(∫

CN,j
dy
)

.

May 2011 DRAFT



TO APPEAR IN THE IEEE TRANSACTIONS ON INFORMATION THEORY 12

Intuitively, high-rate quantizers should be constructed in such a way that ζ(y) is large at those

points y for which a fine quantization is essential to discriminate the two hypotheses. Theorem 2

below provides a more rigorous formulation of this intuition.

Remark 4: Assumption 3 is essentially the same as the one traditionally made in the high-rate

quantization framework [3], [6], [18]. The main difference lies in Assumption 3-3): Usually, the

volume of each cell vanishes at speed 1/N while the diameter tends to zero. Our assumption

introduces a constraint on the speed of convergence of the sequence of diameters {dN,j}, which

ensures that cells shrink at the same speed (1/N1/d) on each dimension. Assumption 3 is for

instance valid for sequence of quantizers constructed as companders [3], [5]. Such quantizers

write as the composition of an invertible function (the so-called compressor) and a uniform

quantizer. Since [5], it is known that any scalar quantizer can be written as a compander. Under

mild conditions on the compressor, it can be shown that any sequence of companders with

a given fixed compressor satisfies Assumption 3 (in this case, the model point density ζ is

fully determined by the first order derivative of the compressor). This point is discussed in

Section IV-C.

B. Error Exponent in the High-Rate Regime

Before stating the main result, we need further assumptions. For each m ≥ 0 and each

i ∈ {0, 1}, define:

ηi(m) = sup
m′≥m

E0 |log pi(Y0|Y−m:−1)− log pi(Y0|Y−m′:−1)| , (5)

ηi,N(m) = sup
m′≥m

E0 |log pi,N(ZN,0|ZN,−m:−1)− log pi,N(ZN,0|ZN,−m′:−1)|

Note that we already assumed in Theorem 1 and Corollary 1 that sequences log pi(Y0|Y−m:−1) and

log pi,N(ZN,0|ZN,−m:−1) converge in L1(P0) as m →∞, meaning that ηi(m) and ηi,N(m) tend

to zero. Now coefficients ηi(m) and ηi,N(m) characterize the speed at which log pi(Y0|Y−m:−1)

and log pi,N(ZN,0|ZN,−m:−1) converge to their limits. They are therefore related to the mixing

property of processes YZ and ZN,Z (this point is discussed below in Remark 8). In the sequel,

we will need to ensure that these limits are reached fast enough (see Assumption 4-3) below).

Assumption 4: The following properties hold true.

1) For any n ≥ 1, y1:n 7→ pi(y1:n) is of class C3 on Yn.
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2) sup{n≥1,y1:n∈Yn, 1≤k,`,r≤n, 1≤h,ß̄,̄≤d}

∣∣∣ ∂3 log pi

∂y
(h)
k ∂y

(ß̄)
` ∂y

(̄)
r

(y1:n)
∣∣∣ <∞ .

3) There exist two constants Ce, ε > 0 such that for each i ∈ {0, 1}, N ≥ 2 and m ≥ 0,

max (ηi(m), ηi,N(m)) ≤ Ce
(1 +m)6+ε

. (6)

4) For each i ∈ {0, 1}, each integers m,m′, k such that −m′ ≤ −m ≤ 0 ≤ k:

E0 ‖∇y0 log pi(Y0:k|Y−m:−1)−∇y0 log pi(Y0:k|Y−m′:−1)‖ ≤ ϕm , (7)

E0 ‖∇y0 log pi(Yk|Y−m:k−1)‖ ≤ ψk , (8)

where
∑

k ϕk and
∑

k ψk are convergent series.

Assumption 4 will be discussed in details at the end of the present subsection. Particular

examples of processes satisfying the above assumption are provided in Section VI and in the

numerical results of Section VII. We are now in position to state our main result. Recall that

p0(y) is the pdf of Y0 under P0. Recall that K and KN are the error exponents associated with

the NP test in the absence and in the presence of quantization respectively, given by (3) and (4).

Note that Assumption 4-3) implies that both sequences ηi(m) and ηi,N(m) tend to zero. This

guarantees that under Assumption 1 the conclusions of Theorem 1 and Corollary 1 hold true

i.e., error exponents K and KN do exist.

Theorem 2: Under Assumptions 1, 3, 4, the following statement holds true:

As N tends to infinity, N2/d(K −KN) converges to a constant De given by

De =
1

2

∫
p0(y)F (y)

ζ(y)2/d
dy , (9)

where function F is given by

F (y) = E0

[
`(YZ)TM(Y0) `(YZ)

∣∣∣Y0 = y
]
, (10)

and random variable `(YZ) is the limit in L2(P0) of sequence
(
∇y0 log p0

p1
(Y−k:k)

)
k≥0

.

The proof of Theorem 2 is given in Section V.

Theorem 2 states that when the order of the quantizer tends to infinity, the error exponent KN

associated with the NP test converges at speed N−2/d to the error exponent K that one would

have obtained in the absence of quantization. Loosely speaking, if βn,N(α) represents the miss

probability of the NP test of level α, the approximation

βn,N(α) ' e
−n

(
K− De

N2/d

)
(11)
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holds when both the number n of sensors and the order N of quantization are large. Quantity De

represents the (normalized) loss in error exponent between the quantized and the unquantized

cases, in the high-rate quantization regime.

Note that Equation (9) resembles to Bennett’s formula [5, Equation (1.6)] and its vector

extension for rth-power distortion [6, Equation (7)].

Remark 5: As a first consequence of Theorem 2, under some assumptions on the process,

classical quantizers as those produced in an MSE perspective will lead to error exponent KN

which converges to K as N tends to infinity, at speed N−2/d (see Equation (11) above).

Remark 6: The particular situation where measurements (Yk)k≥0 are i.i.d. under both hypothe-

ses was studied by Gupta and Hero [18]. In this case, function F (y) reduces to:

F (y) = ∇Λ(y)T M(y)∇Λ(y) ,

where Λ(y) = log p0(y)
p1(y)

is the single sample LLR. Then, expression (9) of De is consistent with

the results of Gupta and Hero (see in particular [18, Equation (20)]).

Note that we assume that each joint density p0(y1:n) and p1(y1:n) is of class C3 on Yn.

Gupta and Hero’s assumption is weaker, since they only assume that “the densities are twice

continuously differentiable on an open set of probability 1” [18, page 1956]. In fact, we need

conditions on the third derivatives of the logarithm of the densities in order to find relevant upper

bounds of the Taylor-Lagrange remainders in the expansion of the joint densities pi(y−m:u) in

the general case (see the detailed proof in Section V).

Remark 7: We now provide some insights on the meaning of Assumption 4 and on the class

of stationary processes which satisfy the latter. Assumptions 4-1) and 4-2) are mild technical

conditions on the smoothness of the pdf of the observations. They encompass a large family of

stochastic processes and are generally simple to validate on a case-by-case basis. As explained

above, Assumption 4-3) can be interpreted as a condition on the speed at which past observations

are forgotten. Quantities ηi(m) and ηi,N(m) can be interpreted as conditional mixing coefficients

associated with the unquantized and quantized processes (Yk)k and (ZN,k)k respectively (see

Remark 8 below). Past observations must be forgotten at least at a polynomial speed faster

than m6. Assumption 4-4) can be interpreted similarly as a forgetting property, which no

longer involves the logarithm of the density of the observations, but its derivative. For instance,

Assumption 4 is simple to verify in case of short-dependent processes (such as moving average
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processes for instance) provided that the density of the observation is smooth enough. A similar

remark holds for a wide class of Markov chains. In this case, Assumption 4 essentially reduces

to a smoothness assumption on the density of the transition kernel. More generally, we prove

in Section VI that Assumption 4 holds for a wide class of hidden Markov models: We provide

sufficient conditions on the transition kernel such that Assumption 4 holds. See also the numerical

results in Section VII.

Remark 8: It is worth making some remarks on the link between Assumption 4 and standard

mixing conditions used in the literature on mixing processes [26], [28], [29]. The mixing property

which is the closest to our setting is related to the notion of ψ-mixing. For two σ-fields U and

V , define the following coefficient [26], [28]:

ψ(U ,V) = sup
U∈U ,V ∈V

P(U)>0,P(V )>0

∣∣∣∣1− P(U ∩ V )

P(U)P(V )

∣∣∣∣ .
Recall that a stochastic process YZ is said to be ψ-mixing when the sequence of ψ-mixing

coefficients ψ(σ(Yn+1), σ(Y−∞:0)) converges to zero. The classical ψ-mixing condition traduces

the fact that, loosely speaking, current samples at time n tend to become independent of past

samples Y0, Y−1, . . . as n increases. In our case, we need to ensure that current samples become

independent of past ones conditionally to intermediate values Y1:n. Usual ψ-mixing coefficient do

not fully allow to grasp this property. In [30], we introduced the following conditional ψ-mixing

coefficient for σ-fields U , V and W:

ψ̄i(U ,V|W) = sup
U∈U , V ∈V

ess sup

∣∣∣∣1− Pi(U ∩ V |W)

Pi(U |W)Pi(V |W)

∣∣∣∣
where the essential supremum is taken w.r.t. P0 and where we use the convention 0/0 = 1. The

above coefficient can be interpreted as a measure of dependence (under Pi) between U and V
conditionally to W . In particular, it coincides with the traditional ψ-mixing coefficient ψ(U ,V)

when W is taken to be the whole space B(YZ) and P = P0. For each n ≥ 1, we further define

ψ̄i(n) = ψ̄i(σ(Yn+1), σ(Y−∞:0)|σ(Y1:n)) and ψ̄i(0) = ψ̄i(σ(Y1), σ(Y−∞:0)) when n = 0. There

exists a close link between the above conditional mixing coefficients and the set of coefficients

ηi(m) defined in (5). In particular, Theorem 2 is valid when Assumption 4-2) is replaced by the

assumption that sequences ψ̄1(n) and ψ̄i,N(n) = ψ̄i(σ(ZN,n+1), σ(ZN,−∞:0)|σ(ZN,1:n)) converge

to zero at speed n6+ε. We refer to [30] for details.
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The asymptotic loss in error exponent De depends on the quantizer through its model point

density ζ and its model covariation profile M . In the sequel, we study the values of these

parameters which attenuate as much as possible the loss De.

C. Determination of Relevant High-Rate Quantizers: Scalar case (d = 1)

We first address the case where measurements (Yk)k≥0 are real-valued. Assume without much

loss of generality that each cell is connected (cells are intervals) i.e., the quantizer is regular [4].

In this case, a straightforward derivation leads to MN(y) = 1/12 for each y and each N .

Therefore, function F simplifies to:

F (y) =
1

12
E0

[
`(YZ)2

∣∣∣Y0 = y
]

=
1

12
lim
k→∞

E0

[(
∂

∂y0

log
p0

p1

(Y−k:k)

)2 ∣∣∣∣Y0 = y

]
.

Using Holder’s inequality on (9), it is straightforward to prove the following result.

Corollary 2: Assume that d = 1 and that cells are intervals. The error exponent loss De is

such that:

De ≥
1

2

(∫
[p0(y)F (y)]1/3 dy

)3

, (12)

where equality holds in (12) when the model point density coincides with:

ζ(y) =
[p0(y)F (y)]1/3∫
[p0(s)F (s)]1/3 ds

.

The above corollary provides the optimal high-rate quantization rule for the initial hypothesis

testing problem. Note that expression (12) is quite similar to [31, Equation (15)] which gives

“the minimum distortion resulting with optimum level spacing” in an MSE perspective.

Remark 9: In practice, N -point scalar quantizer achieving a given model point density ζ can

be easily implemented by means of a compander. Recall that a compander is defined as the

composition of an invertible continuous function φ (the so-called compressor) and a uniform

quantizer [3], [5]. To that end, it is sufficient to define the compressor φ as the primitive of ζ

on the observation space. For example, if Y is the segment [a, b] ⊂ R, define φ(x) =
∫ x
a
ζ(t)dt.

Next the output of the compander is quantized using a uniform N -point quantizer on the interval

[0, 1]. Under the assumption that ζ is a Lipschitz function, it is straightforward to show that the

resulting sequence of quantizers satisfies Assumption 3 i.e., that it achieves the model point

density ζ .
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D. Determination of Relevant High-Rate Quantizers: Vector case (d ≥ 2)

In the vector case, the determination of optimal high-rate quantization rules implies the joint

minimization of expression (9) w.r.t. both functions ζ and M . Unfortunately, as remarked in [3],

[32], it is not known what functions M are allowable as covariation profiles. The determination

of the set of admissible couples (ζ,M) is an open problem, which is beyond the scope of this

paper.

However, when M is fixed, the point density ζ which minimizes De can be easily expressed

as a function of M . Once again, this is a consequence of Holder’s inequality:

De ≥
1

2

(∫
[p0(y)F (y)]

d
d+2 dy

) d+2
d

,

where equality is achieved when the point density coincides with:

ζ(y) =
[p0(y)F (y)]

d
d+2∫

[p0(s)F (s)]
d

d+2 ds
. (13)

In other words, one can easily provide the optimal high-rate quantization rule for a given limiting

covariation profile. Following the approach of [18], we study two special cases of covariation

profile:

1) Congruent cells with minimum moment of inertia: In this paragraph, we focus on congruent

cells with minimum moment of inertia i.e., we assume that

∀ y ∈ Y, M(y) = νId , (14)

for some ν > 0, where Id represents the d× d identity matrix.

Recall that Gersho [33] made the now widely accepted conjecture that when N tends to infinity,

most cells (i.e., all the cells except those which are close to the boundary of the considered

domain) of a d-dimensional MSE-optimal quantizer become congruent to some tessellating d-

dimensional polytope H∗d . In such a case, M(y) is independent of y. Furthermore, Zamir and

Feder [34, Lemma 1] proved that the cells of the MSE-optimal lattice quantizers become “closer”

to balls i.e., with minimum moment of inertia, as dimension d grows.

For quantizers with covariation profile given by (14), the optimal point density (13) becomes:

ζ(y) =

[
p0(y)F̄ (y)

] d
d+2∫ [

p0(s)F̄ (s)
] d

d+2 ds
, (15)
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where function F̄ is defined by

F̄ (y) = E0

[
‖`(YZ)‖2

∣∣∣Y0 = y
]

= lim
k→∞

E0

[∥∥∥∥∇y0 log
p0

p1

(Y−k:k)

∥∥∥∥2 ∣∣∣Y0 = y

]
. (16)

Design Algorithm: In practice, one would like to design an N -point quantizer which

point density approximately equals (15) for some finite N . This can be achieved by means

of well-established algorithms, the most popular of them being the Linde-Buzo-Gray (LBG)

algorithm [35]. This algorithm is an iterative method which computes a Voronoi tessellation,

and yields an MSE-optimal N -point quantizer, from a training set of data of some pdf p0(y).

An (N -point) MSE-optimal quantizer for density p0(y) minimizes E0

[
‖Y0 − ξN(Y0)‖2]. As

the number of quantization points N tends to infinity, such a quantizer has the following model

point density [3], [6]:

ζMSE(y) =
p0(y)

d
d+2∫

p0(s)
d

d+2 ds
. (17)

Comparing Equations (15) and (17), we deduce that the proposed quantizer, whose model point

density ζ is given by Equation (15), can be obtained in practice by simply feeding the classical

LBG algorithm with a training set of data of the following pdf:

q∗(y) =
p0(y)F̄ (y)∫
p0(s)F̄ (s) ds

.

Section VII provides numerical illustrations of this approach.

2) Ellipsoidal cells: In order to yield some insights on the general shape of the cells, and

following [18], we focus in this paragraph on ellipsoidal cells. This kind of cells can not partition

the considered convex subset Y of Rd but, for large dimension d, in analogy with the spherical

cell approximation [3], [34], [36], we may assume that almost all cells of a given quantizer are

close to ellipsoids.

Such an ellipsoidal cell, in the neighborhood of point y writes C = {x : (x−y)TR(y) (x−y) ≤
1}, for some symmetric positive definite matrix R(y). The corresponding covariation profile

writes M(y) = ν |R(y)|1/dR(y)−1 [18], [37], for some ν > 0, and has an eigendecomposition

M(y) = U(y) Φ(y)U(y)T ,
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where Φ(y) = Diag (φ1:d(y)),4 and U(y) is an orthogonal matrix. Note that the (positive)

eigenvalues (φi(y))i∈{1,...,d} of M(y) capture the relative importance of the axes of the ellipsoid C,

while the columns (ui(y))i∈{1,...,d} of U(y) i.e., the eigenvectors of M(y), indicate their respective

directions.

In this paragraph, we assume that eigenvalues (φi)i∈{1,...,d} are fixed, constant w.r.t. y and,

without loss of generality, sorted in increasing order i.e., 0 < φ1 ≤ φ2 ≤ · · · ≤ φd. We want

to find the best orthogonal matrix U(y) i.e., the one which minimizes function F (y), given at

Equation (10), in order to minimize the error exponent loss De (9). In other words, for a given

“shape” of (non-degenerate) ellipsoid, we look for the best directions of its axes. Function F (y)

writes:

F (y) = E0

[
`(YZ)TM(Y0) `(YZ)

∣∣∣Y0 = y
]

= Tr
(
U(y) ΦU(y)TL̄(y)

)
, (18)

where L̄(y) = E0

[
`(YZ) `(YZ)T

∣∣∣Y0 = y
]
. Now write the eigendecomposition of the positive

definite matrix L̄(y) :

L̄(y) = V (y) ∆(y)V (y)T ,

where ∆(y) = Diag (λ1:d(y)), (λi(y))i∈{1,...,d} are the (positive) eigenvalues of L̄(y) sorted in

increasing order i.e., 0 < λ1(y) ≤ λ2(y) ≤ · · · ≤ λd(y), and V (y) is an orthogonal matrix.

Equation (18) thus writes:

F (y) = Tr (U(y) ΦU(y)TV (y) ∆(y)V (y)T)

≥
d∑
i=1

φi λd−i+1(y) ,

where the last inequality follows from a well-known trace inequality for positive semidefinite

Hermitian matrices [38], [39, Section 9-H]. The above lower bound is furthermore achieved

choosing matrix U(y) such that U(y)TV (y) is the anti-diagonal matrix with ones on its anti-

diagonal i.e., defining the ith column of matrix U(y) as the (d− i+1)th column of matrix V (y),

or equivalently eigenvector ui(y) of matrix M(y) as eigenvector vd−i+1(y) of matrix L̄(y).

4For any given d-dimensional vector x1:d ∈ Rd, Diag (x1:d) represents the d-by-d diagonal matrix with diagonal coefficients

(x1, x2, . . . , xd).
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From the above derivations, we conclude that if a cell is a non-degenerate ellipsoid around y

then its axes should be aligned along the ones of matrix L̄(y) in the reverse order. In particular,

its minor axis should be aligned along the principal eigenvector of matrix L̄(y).

V. PROOF OF THEOREM 2

A. Preliminaries

Recall that VN,j =
∫
CN,j

dy is the volume of cell CN,j (j ∈ {1, . . . , N}). For each i ∈ {0, 1}
and each set of quantization points ξN,j1:n = (ξN,j1 , . . . , ξN,jn) ∈ Ξn

N , define the following rescaled

pdf of ZN,1:n:

p̄i,N(ξN,j1:n) =
1

VN,j1 × . . .× VN,jn
pi,N(ξN,j1:n)

=
1

VN,j1 × . . .× VN,jn
Pi,n(CN,j1 × . . .× CN,jn) . (19)

The above definition is convenient because p̄i,N(ξN,j1:n) ' pi(ξN,j1:n) for large values of N . This

approximation will be of prime importance in the sequel. We define function p̄i,N(ξN,jn|ξN,j1:n−1)

similarly.

For each i ∈ {0, 1} and each integer ` ≥ 0, we introduce the following functions:

∀ y−`:0 ∈ Y`+1, Li(y−`:0) = log pi(y0|y−`:−1) ,

∀ z−`:0 ∈ Ξ`+1
N , Li,N(z−`:0) = log p̄i,N(z0|z−`:−1) .

Due to Assumptions 1-3) and 4-3) (which ensures that ηi(0) <∞), random sequence (Li(Y−`:0))`≥0

lies in L1(P0). Moreover, Assumption 4-3) for large m ensures that sequence (Li(Y−`:0))`≥0 is a

Cauchy sequence of L1(P0). Denote by Li(Y−∞:0) its limit. From Assumption 4-3) once again,

the following holds for any ` ≥ 0,

E0|Li(Y−`:0)− Li(Y−∞:0)| ≤ Ce
(1 + `) 6+ε

. (20)

A similar result holds for sequence (Li,N(ZN,−`:0))`≥0 which converges in L1(P0) to some

random variable Li,N(ZN,−∞:0) and verifies for any ` ≥ 0,

E0|Li,N(ZN,−`:0)− Li,N(ZN,−∞:0)| ≤ Ce
(1 + `) 6+ε

. (21)

Our aim is to study the difference K−KN between error exponents associated with the ideal

and quantized cases respectively. We may write the difference as

K −KN = (K0 −K0,N)− (K1 −K1,N) , (22)
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where we defined for each i ∈ {0, 1},

Ki = E0 [Li(Y−∞:0)] ,

Ki,N = E0 [Li,N(ZN,−∞:0)] .

In the sequel, we focus on the study of K1 −K1,N , the study of K0 −K0,N being similar.

We now proceed with the proof. Choose any ε′ such that 0 < ε′ < ε
3d(6+ε)

. Define the sequence

of integers m = m(N) = bN1/(3d)−ε′c. We shall remember that with this definition,

lim
N→∞

m3

N1/d
= 0 . (23)

The following decomposition holds true: K1,N = K1 + TN + UN + δN , where we defined:

TN = E0 [L1,N(ZN,−m:0)− L1(ZN,−m:0)] ,

UN = E0 [L1(ZN,−m:0)− L1(Y−m:0)] ,

δN = E0 [L1,N(ZN,−∞:0)− L1,N(ZN,−m:0)] + E0 [L1(Y−m:0)− L1(Y−∞:0)] .

Using Equations (20) and (21), it is straightforward to show that

N2/d|δN | ≤ 2Ce
N2/d

(1 +m) 6+ε
.

By definition of m = m(N), we deduce that N2/d|δN | converges to zero as N → ∞. As a

consequence, the asymptotic analysis of quantity N2/d(K1,N −K1) reduces to the study of TN

and UN .

As Y is a bounded set, Assumption 4-2) implies the following bounds on the derivatives of

density p1 which will be of permanent use in the sequel:

sup
{y1:n∈Yn, 1≤k≤n}

‖∇yk log p1(y1:n)‖ ≤ C1 , (24)

sup
{y1:n∈Yn, 1≤k≤n}

∥∥∇2
yk

log p1(y1:n)
∥∥ ≤ C2 , (25)

for some constants C1 and C2.

B. Study of TN

We expand TN as follows:

TN = E0

[
log

p̄1,N(ZN,−m:0)

p1(ZN,−m:0)

]
− E0

[
log

p̄1,N(ZN,−m:−1)

p1(ZN,−m:−1)

]
. (26)
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We now study each term of the r.h.s. of the above equality. Consider u ∈ {−1, 0}. Writing

the Taylor-Lagrange expansion of function y−m:u 7→ p1(y−m:u) at point ξN,j−m:u , using Assump-

tions 3-3), 4 and the properties of the quantizers sequence, we prove the following lemma (the

detailed proof is given in Appendix A).

Lemma 2: For each j−m:u ∈ {1, . . . , N}u+m+1, the following expansion holds true:

p̄1,N(ξN,j−m:u)

p1(ξN,j−m:u)
= 1 +

1

2N2/d

u∑
k=−m

Tr

(
∇2
yk
p1(ξN,j−m:u)T

p1(ξN,j−m:u)

MN,jk

ζ
2/d
N,jk

)
+ εN,j−m:u ,

where
∣∣εN,j−m:u

∣∣ ≤ cT
(
m+1
N1/d

)3 for some constant cT .

Plugging the above equation into (26), using
∣∣ log(1+x)−x

∣∣ ≤ x2 in a neighborhood of zero,

Assumptions 3, 4-2) and Equation (23), we obtain:

TN = TN(0)− TN(−1) + oN(N−2/d) , (27)

where, for each u ∈ {−1, 0},

TN(u) =
1

2N2/d

u∑
k=−m

E0

[
Tr
(∇2

yk
p1(ZN,−m:u)

T

p1(ZN,−m:u)

MN(Yk)

ζN(Yk)2/d

)]
. (28)

C. Study of UN

We expand UN as follows:

UN = E0 [log p1(ZN,−m:0)− log p1(Y−m:0)]− E0 [log p1(ZN,−m:−1)− log p1(Y−m:−1)] , (29)

and study each term of the r.h.s. of the above equality. For each u ∈ {−1, 0} and each j−m:u ∈
{1, . . . , N}u+m+1, we expand function y−m:u 7→ log p1(y−m:u) at point ξN,j−m:u:

log p1(y−m:u) = log p1(ξN,j−m:u) +
u∑

k=−m
∇yk log p1(ξN,j−m:u)T (yk − ξN,jk)

+
1

2

u∑
k,`=−m

(yk − ξN,jk)T∇2
yk,y`

log p1(ξN,j−m:u) (y` − ξN,j`) + ε′N(y−m:u) . (30)

Under Assumptions 3-3) and 4-2), for each y−m:u ∈ CN,j−m×· · ·×CN,ju , the remainder is such

that

|ε′N(y−m:u)| ≤ (m+ 1)3 c′3

(
Cd
N1/d

)3

,
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for some constant c′3. By Equation (23), the r.h.s. of the above inequality converges to zero as

N tends to infinity faster than N−2/d. Plugging Taylor expansion (30) into the expression (29)

of UN , we obtain:

UN = UN(0)− UN(−1) + oN(N−2/d) , (31)

where, for each u ∈ {−1, 0},

UN(u) = −
u∑

k=−m
E0 [∇yk log p1(ZN,−m:u)

T (Yk − ZN,k)]

− 1

2

u∑
k,`=−m

E0

[
(Yk − ZN,k)T∇2

yk,y`
log p1(ZN,−m:u) (Y` − ZN,`)

]
. (32)

The next step is to study each dominant term of the r.h.s. of (32). The proof of the following

lemma is provided in Appendix B.

Lemma 3: The following equality holds true for each u ∈ {−1, 0}:

UN(u) = AN(u) +BN(u) + oN(N−2/d) ,

where AN and BN are defined as follows:

AN(u) = − 1

N2/d

u∑
k=−m

E0

[
∇yk log p1(ZN,−m:u)

T MN(Yk)

ζN(Yk)2/d
∇yk log p0(Y−m:u)

]
, (33)

BN(u) = − 1

2N2/d

u∑
k=−m

E0

[
Tr
(
∇2
yk

log p1(ZN,−m:u)
MN(Yk)

ζN(Yk)2/d

)]
.

Now we expand the term ∇2
yk

log p1 as follows:

∇2
yk

log p1(y−m:u) =
∇2
yk
p1(y−m:u)

p1(y−m:u)
− ∇ykp1(y−m:u)∇ykp1(y−m:u)

T

(p1(y−m:u))2
.

From the above decomposition and Equation (28), we can divide BN(u) into two terms:

BN(u) =
1

2N2/d

u∑
k=−m

E0

[
Tr
(
∇yk log p1(ZN,−m:u)∇yk log p1(ZN,−m:u)

T MN(Yk)

ζN(Yk)2/d

)]
− TN(u) .

Expanding function ∇yk log p1 in the above equation and in (33), we can write dominant terms

in a simple form i.e., replace each ZN by Y . Under Assumption 3, from Equations (25) and (23),

we can easily prove that the corresponding remainders are oN(N−2/d).
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Putting all pieces together, we obtain

UN(u) = − 1

N2/d

u∑
k=−m

E0

[
∇yk log p1(Y−m:u)

T MN(Yk)

ζN(Yk)2/d
∇yk log p0(Y−m:u)

]

+
1

2N2/d

u∑
k=−m

E0

[
∇yk log p1(Y−m:u)

T MN(Yk)

ζN(Yk)2/d
∇yk log p1(Y−m:u)

]
− TN(u) + oN(N−2/d) . (34)

D. End of the Proof

From the results of sections V-B and V-C, we can easily prove the following lemma.

Lemma 4: The following holds true:

N2/d(K −KN) = E0 [HN,0(Y−m:0)] +
−1∑

k=−m
E0 [HN,k(Y−m:0)−HN,k(Y−m:−1)] + oN(1) , (35)

where for each u ∈ {−1, 0}, each m ≥ 1 and each k ∈ {−m, . . . , u}:

HN,k(Y−m:u) =
1

2
∇yk log

p0

p1

(Y−m:u)
T MN(Yk)

ζN(Yk)2/d
∇yk log

p0

p1

(Y−m:u) . (36)

Proof: Recalling the decomposition: K1,N = K1 + TN + UN + oN(N−2/d) and gathering

Equations (27), (31), (34), it is straightforward to prove the following equality:

N2/d(K1,N −K1) =−
0∑

k=−m
E0

[
∇yk log p1(Y−m:0)T MN(Yk)

ζN(Yk)2/d
∇yk log p0(Y−m:0)

]

+
1

2

0∑
k=−m

E0

[
∇yk log p1(Y−m:0)T MN(Yk)

ζN(Yk)2/d
∇yk log p1(Y−m:0)

]

+
−1∑

k=−m
E0

[
∇yk log p1(Y−m:−1)T MN(Yk)

ζN(Yk)2/d
∇yk log p0(Y−m:−1)

]

− 1

2

−1∑
k=−m

E0

[
∇yk log p1(Y−m:−1)T MN(Yk)

ζN(Yk)2/d
∇yk log p1(Y−m:−1)

]
+ oN(1) .

Similar expression holds for N2/d(K0,N − K0)–replace all p1 by p0 in the above equation.

Lemma 4 follows from decomposition (22).
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We now study the series (35). From Assumptions 3, 4-2) and 4-4), the following forgetting

properties hold true for any positive integers `′, ` and any integers k, u s.t. −`′ ≤ −` ≤ k ≤ u:

E0 |HN,k(Y−`:u)−HN,k(Y−`′:u)| ≤ chϕ`−|k| , (37)

E0 |HN,k(Y−`:0)−HN,k(Y−`:−1)| ≤ chψ|k| , (38)

for some constant ch.

It is clear from (37) that sequence (HN,k(Y−`:u)))`≥−u is a Cauchy sequence in L1(P0). We

simply denote its limit by HN,k(Y−∞:u). Inequalities (37) and (38) provide the main tools for the

asymptotic analysis of series (35). The proof of the following lemma is given in Appendix C.

Lemma 5: The following holds true:

N2/d(K −KN) = E0 [HN,0(Y−∞:0)] +
−1∑

k=−∞
E0 [HN,k(Y−∞:0)−HN,k(Y−∞:−1)] + oN(1) .

As process (Yk)k∈Z is stationary, the expectation E0 enclosed in the sum of the above equation

is invariant w.r.t. a time-shift. Using this remark, we obtain after algebra

N2/d(K −KN) = lim
k→∞

E0 [HN,0(Y−∞:k)] + oN(1) . (39)

For a fixed k ≥ 0, Equation (7) ensures that sequence
(
∇y0 log p0

p1
(Y−m:k)

)
m≥0

is a Cauchy

sequence in L1(P0). Denote its limit by `k(Y−∞:k). The upper bound of Equation (8) is uniform

in m. Consequently, it also holds for sequence (`k(Y−∞:k))k≥0:

E0 ‖`k(Y−∞:k)− `k−1(Y−∞:k−1)‖ ≤ ψk .

Under Assumption 4-4),
∑

k ψk is a convergent series. Sequence (`k(Y−∞:k))k≥0 is thus a

Cauchy sequence in L1(P0). Denote its limit by `(YZ). Moreover, the upper bound of Equation (7)

(resp. Equation (8)) is uniform in m′ (resp. m). It is then straightforward to prove that `(YZ)

coincides with the L1(P0)-limit of sequence
(
∇y0 log p0

p1
(Y−k:k)

)
k≥0

.

From Equation (24) and its counterpart for density p0, quantity ∇y0 log p0

p1
(Y−k:k) is uniformly

bounded. Consequently, the above limit also holds in the L2(P0)-sense:

∇y0 log
p0

p1

(Y−k:k)
L2(P0)−−−−→
k→∞

`(YZ) . (40)

Plugging Equations (36) and (40) in Equation (39) and letting N tend to ∞ complete the

proof of Theorem 2.
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VI. ILLUSTRATION: CASE OF A HIDDEN MARKOV PROCESS

In this section, we translate our assumptions in the case of (discrete-time) hidden Markov

models. For such models, they reduce to simpler conditions on the transition kernel of the

underlying Markov chain, and on the observation kernel. This context, where the measurements

are noisy samples of a certain Markov source, has raised a deep interest in the recent literature

on sensor networks (see [23], [24] and reference therein).

Consider a stationary Markov process (Xk)k≥0 taking its values in an arbitrary state space X,

and playing the role of a source signal to be detected. For each i ∈ {0, 1} and each integer t, we

assume that the (iterated) transition kernel Pi [Xk+t ∈ · |Xk = x] admits a density x′ 7→ qti(x, x
′)

w.r.t. some probability measure λ on (X, B(X)). Assume that there exist an integer m, and two

real numbers σ−, σ+ s.t., for each i ∈ {0, 1} and each (x, x′) ∈ X2, 0 < σ− ≤ qmi (x, x′) ≤ σ+.

In particular, this assumption implies that the Markov chain (Xk)k∈Z has bounded support.

If the state space X is finite, the above conditions hold if the Markov chain (Xk)k∈Z is

irreducible aperiodic, choosing λ as the (normalized) counting measure on X. In this case, the

chain indeed admits a stationary distribution, and qmi (x, x′) > 0 for each x, x′ and some integer

m [40, Section 8].

The states Xk of the above Markov source are supposed to be hidden. However, a “noisy”

version Yk (∈ Y ⊂ Rd) of Xk is available at the kth sensor. We assume that the distribution

P[Yk ∈ · |Xk = x] does not depend on the hypothesis H0 or H1, and admits a density y 7→ g(x, y)

w.r.t. the d-dimensional Lebesgue measure µ restricted to Y, such that 0 < infx,y g(x, y) ≤
supx,y g(x, y) < ∞. We furthermore assume that this density verifies some smoothness condi-

tions: For each x ∈ X, y 7→ g(x, y) is of class C3 on Y, and sup{x∈X, y∈Y, 1≤h,ß̄,̄≤d}∣∣∣ ∂3g

∂y(h) ∂y(ß̄) ∂y(̄) (x, y)
∣∣∣ <∞. The situation is depicted in Figure 1.

A similar assumption was recently introduced by [41], [42] in order to study the asymptotic

behaviour of the log-likelihood log pi(Y1:n) as n tends to infinity. In particular, it was shown

that:

|log pi(Y0|Y−m:−1)− log pi(Y0|Y−m′:−1)| ≤ 2

1− σ−/σ+

(
σ−

σ+

)m−1

for each m′ ≥ m ≥ 0. This clearly proves that sequence log pi(Y0|Y−m:−1) converges in L1(P0)

as m → ∞ and yields Assumption 2. Moreover, the convergence holds at exponential speed,

meaning that quantities ηi(m), defined by Equation (5), vanish faster than 1/m6. The same claim
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· · · Xk−1 Xk Xk+1 · · ·
q0/1 q0/1 q0/1

Yk−1 Yk Yk+1

g

ξN ξN ξN

Fusion Center

ZN,k−1 ZN,k ZN,k+1

decision

Figure 1: Detection of a discrete-time Markov process based on noisy observations.

holds as well for quantities ηi,N(m), without need for any special condition on the quantizer

(quantization preserves the hidden Markov nature of the original process (Yk)k∈Z). This yields

Assumption 4-3).

Assumptions 4-1) and 4-2) are direct consequences of the above smoothness conditions on

density g. Assumption 4-4) can be derived following the arguments of [41], [42].

The following proposition then follows from the results of [41], [42]. The proof is therefore

omitted.

Proposition 1: All conditions given by Assumptions 1 and 4 hold true for the particular

process (Yk)k∈Z described in this section.

As a consequence, if the family of quantizers moreover verifies Assumption 3, then the

conclusions of Theorems 1 and 2 hold true.

Section VII-A below provides a practical example of such a detection problem.

VII. NUMERICAL RESULTS

In this section, we provide numerical illustrations of the proposed quantization rule in terms

of geometric properties and performance. Different contexts are considered and we compare

several quantizers:

• The proposed quantizer, obtained using the approach described in Section IV-D1 and whose

model point density is given by (15).
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• The MSE-optimal quantizer, which minimizes E0 ‖Y0 − ZN,0‖2 and whose model point

density is given by (17).

• Gupta-Hero quantizer, introduced in [18]: In this case the model point density is drawn as

if observations were i.i.d. i.e., only taking the marginal distributions p0(y) and p1(y) into

account.

• The uniform quantizer with constant model point density.

A. Scenario #1: Detection of Quaternary Modulations: QPSK vs. OQPSK

In this section, we provide an example of hidden Markov models which verify the assumptions

given at Section VI, and detail how to use in this case the approach described in Section IV-D1

for the design of practical quantizers.

1) Observation Model: We consider the following model for vector observations with dimen-

sion d = 2:

Yk = T (Xk) +Wk , (41)

where (Xk)k∈Z is a 2-bit message, which takes values in X = {0, 1, 2, 3}, T (x) is the 2-

D representation of state x in the I-Q plane5 according to Figure 2, and Wk
i.i.d.∼ CN (0, σ2)

represents a zero mean circular Gaussian thermal noise with variance σ2. Process (Xk)k∈Z is

i.i.d., uniformly distributed under H0, and forms a Markov chain under H1. More precisely,

H0 : Xk
i.i.d.∼ U{0,1,2,3}

H1 : X0 ∼ U{0,1,2,3}, P1[Xk+1 = x′|Xk = x] = q(x, x′) ,

where q is the transition matrix of the Markov chain and is given by:

q =


1/3 1/3 0 1/3

1/3 1/3 1/3 0

0 1/3 1/3 1/3

1/3 0 1/3 1/3

 .
This situation arises when testing from noisy observations between two possible quaternary mod-

ulations, namely quadrature phase-shift keying (QPSK) and offset quadrature phase-shift keying

(OQPSK), in the In-phase/Quadrature plane [43, Chapter 3]. The corresponding constellations

are depicted in Figure 2.

5 T (0) = [−1;−1], T (1) = [−1; 1], T (2) = [1; 1], T (3) = [1;−1].
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Figure 2: QPSK vs. OQPSK – Constellation diagrams and transitions probabilities for (a)

QPSK, (b) OQPSK.

In the observation model (41), densities have infinite support. We thus consider truncated

observations on Y = [−M ;M ]2 for some positive real number M [44, Section 10.1]. The new

(truncated) model is a hidden Markov model with observation density g(x, y) given by:

g(x, y) =
1[−M ;M ]2(y)

CM(σ)
exp

(−1

2σ2
(y − T (x))T(y − T (x))

)
, (42)

where 1A stands for the indicator function of set A, and CM(σ) is a constant such that
∫
Y
g(x, y)dy =

1, for each x ∈ {0, 1, 2, 3} i.e., CM(σ) =
(∫M
−M exp

(
−(t−1)2

2σ2

)
dt
)2

.

The above hidden Markov model verifies the assumptions given at Section VI. From Propo-

sition 1, if the family of quantizers verifies Assumption 3, then the conclusions of Theorems 1

and 2 hold true.

Note that the marginal pdf of the measurements (Yk)k≥0 (represented in Figure 3) writes

p0(y) = p1(y) =
1

4

3∑
x=0

g(x, y) . (43)

Since it does not depend on the hypothesis, Gupta-Hero quantizer [18], which minimizes the

error exponent loss in case of i.i.d. observations, is not defined.
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Figure 3: QPSK vs. OQPSK – Marginal pdf of the observations p0(y) = p1(y) (M = 3, σ = 0.6).

2) Examples of Quantizers: Figure 4(a) represents the MSE-optimal 128-cell quantizer ob-

tained by the LBG algorithm, and setting M = 3, σ = 0.6. Figure 4(b) represents the corre-

sponding proposed quantizer. Our quantizer is significantly different from the MSE-optimal one.

Some low probability points turn out to be significant for the considered detection problem.

Details on how we obtained these quantizers are given below.

a) MSE-optimal quantizer: The MSE-optimal quantizer of Figure 4(a) was obtained by

feeding the LBG algorithm with 20 000 samples following distribution P0 i.e., i.i.d. with pdf

p0(y) (see Figure 3).

b) Proposed quantizer: As noted in Section IV-D1, the proposed quantizer, whose model

point density ζ is given by Equation (15), can be obtained by simply feeding the LBG algorithm

with observations corresponding with the following pdf:

q∗(y) =
p0(y)F̄ (y)∫
p0(s)F̄ (s) ds

.

We simulated 20 000 samples of this pdf using rejection sampling [45, Section 2.2]. In practice,

we approximated function F̄ given by Equation (16) by:

F̄k(y) =
1

nMC

nMC∑
j=1

∥∥∥∥∇y0 log
p0

p1

(Y−k:−1(j), y, Y1:k(j))

∥∥∥∥2

, (44)

for k = 3 and nMC = 1 000 replications (Ym(j))m∈{−k,...,−1,1,...,k},j∈{1,...,nMC} i.e., 6 000 i.i.d.

samples with pdf p0. These values were chosen based on empirical observations.
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Figure 4: QPSK vs. OQPSK – (a) MSE-optimal 128-cell quantizer, (b) Proposed 128-cell

quantizer (M = 3, σ = 0.6, 20 000 samples).

The gradient in the above equation may be written as follows, after some derivations, and

using Equations (42), (43):

∇y0 log
p0

p1

(y−k:k) = ∇y0 log p0(y0)−∇y0 log p1(y−k:k)

=
1

σ2

E0 [T (X0) g(X0, y0)]

E0 [g(X0, y0)]
−

E1

[
T (X0)

∏k
j=−k g(Xj, yj)

]
E1

[∏k
j=−k g(Xj, yj)

]
 .

As they are finite sums on X or X2k+1, the above four expectations are exactly computed at the

time of the evaluation of F̄k (44).

B. Scenario #2: Detection of an AR Structure in Gaussian 2-D Signals

We consider the following model for vector observations with dimension d = 2:

Yk = Xk +Wk ,

where Wk
i.i.d.∼ CN (0, σ2) represents a zero mean circular Gaussian thermal noise with variance

σ2, and where (Xk)k∈Z is a Gaussian process which is white under H0 and correlated (AR-1)
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Figure 5: Detection of an AR structure – (a) MSE-optimal 64-cell quantizer, (b) Proposed 64-cell

quantizer (a = 0.8, σ = 1, 20 000 samples).

under H1. More precisely,

H0 : Xk
i.i.d.∼ CN (0, 1)

H1 : Xk = aXk−1 +
√

1− a2 Uk ,

where a ∈ (0, 1) is the correlation coefficient and Uk
i.i.d.∼ CN (0, 1) is the innovation process. In

particular, (Yk)k∈Z is a white Gaussian process under H0 and is a hidden Markov process under

H1, with the particular property that marginal distribution of single observations are identical

under both hypotheses.

We mention that in the above model, densities have infinite support so that the assumptions

made in this paper are not satisfied (the observation set Y coincides with R2 and is thus

unbounded). In particular, Theorem 2 does not apply. Nevertheless, in order to yield some insights

on the design of practical quantizers for detection, we can still use the approach described in

Section IV-D1 and compute the proposed model point density given by Equation (15).

Figure 5(a) represents the MSE-optimal 64-cell quantizer obtained by the LBG algorithm (with

a 20 000-sample training set of data), and setting σ = 1. Figure 5(b) represents the corresponding
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proposed quantizer6, obtained when setting a = 0.8. Once again, our quantizer is significantly

different from the MSE-optimal one. As a matter of fact, low probability points seem to be

significant for the considered detection problem.

Table I compares the latter two quantization rules and the uniform one (on the rectangle

[−8; 8]2) in terms of quantity De (9). As expected, the proposed quantization rule leads to the

lowest one. We can guess it will also lead to higher detection performance.

Table I: Detection of an AR structure – Quantity De for parameters values a = 0.8 and σ = 1.

Quantization rule Uniform on [−8; 8]2 MSE-optimal Proposed one

Quantity De 8.211 2.255 2.112

C. Scenario #3: Detection of a Scalar MA Process in Noise

Denote by Yk the samples collected by a receiver which makes a binary test associated with

the following hypotheses:
H0 : Yk = Wk ,

H1 : Yk =
L∑
`=0

h` Uk−` +Wk .

where Wk
i.i.d.∼ N (0, σ2) represents a thermal noise which is supposed to be real-valued for

the sake of illustration. Here, Uk represents a certain random source which is passed through a

propagation channel with deterministic real coefficients h0, . . . , hL, where L is an integer which

represents the channel’s memory. In the sequel, we set L = 3. Assume for instance that Uk is

Gaussian distributed Uk
i.i.d.∼ N (0, 1). We investigate the case where the sensing unit performs a

scalar quantization of the received signal before transmission to the decision device.

As in Section VII-B, in the above model, densities have infinite support so that the assumptions

made in this paper are not satisfied. Once again, in order to yield some insights on the design

of practical quantizers for detection, we can still use the approach described in Section IV-D1

and compute the proposed model point density given by Equation (15)7.

6In this case, we approximated function F̄ (16) for finite k and exactly computed the involved expectation.
7In this case, we approximated function F̄ (16) for finite k and exactly computed the involved expectation.
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Figure 6: Detection of an MA process – Probability and model point densities (h =

[1.06677,−0.59281, 0.09565], σ = 1.5).

For the same reason, the result of Gupta and Hero [18, Equation (20)] does not apply,

but we can compute the corresponding quantizer, which model point density is given by [18,

Equation (25)], as they did for their Gaussian examples in [18, Section V].

The performance depend on the noise variance σ2 and on the particular value of the channel.

Thus, we assumed that channel coefficients h0, . . . , hL are i.i.d. Gaussian distributed with zero

mean and unit variance, and made several simulations.

Figure 6 represents the probability and model point densities for one channel realization i.e.,

h = [1.06677,−0.59281, 0.09565], and setting σ = 1.5.

Considering a system with n = 80 sensors, constructing 4-cell quantizers for different methods,

and computing the corresponding quantized probability distributions under each hypothesis, we

can compare the considered quantization rules in terms of detection performance through their

respective receiver operating characteristics (ROC curves). Figure 7 represents such curves for

the above channel realization. The uniform quantizer is used on the support [−10σ, 10σ]. The

whole curve is plotted using 50 000 samples of LLR under each hypothesis.

The proposed quantization rule improves the detection performance compared to the MSE-

optimal quantizer. In this example, the ROC curve is close to that obtained using Gupta-Hero
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quantizer. Recall however that in other contexts (e.g. in Scenarios #1 and #2), Gupta-Hero

quantizer may not even be defined. We must also qualify this observation: Our theoretical results

are valid in the asymptotic regime where N and n tend to infinity, that is, in the regime where

the power of the test tends exponentially to one. In practice, the empirical validation of our

result would thus require to simulate rare events. This topic is out of the scope of this paper.

Note that if we interchange H0 and H1, the proposed quantization rule will be different.

This is due to the fact that the asymptotic regime we are interested in when dealing with error

exponents i.e., n tends to infinity for a fixed type-I error α, restricts attention to one point along

the Neyman-Pearson ROC curve.
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Figure 7: Detection of an MA process – ROC curves (h = [1.06677,−0.59281, 0.09565], σ = 1.5,

n = 80, N = 4, 100 000 samples).

VIII. CONCLUSION

We investigated the performance of the Neyman-Pearson detector used on quantized versions

of a correlated vector-valued stationary process. It was shown that for a constant false alarm

level, the miss probability of the test converges exponentially to zero. We determined the error

exponent and we provided a compact and informative expression of the latter in the context of

high-rate quantization. It is proved in particular that when the number N of quantization levels

tends to infinity, the error exponent converges at speed N−2/d to the ideal error exponent that
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one would obtain in the absence of quantization. In case of scalar quantization, we analytically

characterized the high-rate quantizers minimizing the error exponent loss. In case of vector

quantization, we proposed a method based on the LBG algorithm in order to construct practical

quantizers with attractive performance.

We believe that there are many directions for extending these results and mention a few

here. In this paper, observations have absolutely continuous probability distributions w.r.t. the

Lebesgue measure. Following Graf and Luschgy [46, Section 6] who considered measures with

both continuous and singular parts, we could think of an extension of our work to such cases.

We moreover focused on constant false-alarm rate (CFAR) tests. Following the arguments

developed in [18] and using the results of [25, Section III], it could be interesting to study the

whole asymptotic ROC curve and use a global performance criterion like the area under the

curve (AUC). However, this would require a nontrivial extension of Sanov’s theorem [47] to

non-i.i.d. times series.

We furthermore think that the framework developed in this paper could be applied in the

context of parameter estimation. The effect of quantization on performance, measured for instance

by the Fisher information, could be studied and corresponding optimal vector quantizers could

be described.

APPENDIX A

PROOF OF LEMMA 2

We write the Taylor-Lagrange expansion of function y−m:u 7→ p1(y−m:u) at point ξN,j−m:u:

p1(y−m:u) = p1(ξN,j−m:u) +
u∑

k=−m
∇ykp1(ξN,j−m:u)T (yk − ξN,jk)

+
1

2

u∑
k,`=−m

(yk − ξN,jk)T∇2
yk,y`

p1(ξN,j−m:u) (y` − ξN,j`) + εN(y−m:u) , (45)

where

εN(y−m:u) =
1

6

u∑
k,`,r=−m

d∑
h,ß̄,̄=1

(y
(h)
k − ξ

(h)
N,jk

)(y
(ß̄)
` − ξ

(ß̄)
N,j`

)(y(̄)
r − ξ(̄)

N,jr
)

× ∂3p1

∂y
(h)
k ∂y

(ß̄)
` ∂y

(̄)
r

(θy−m:u + (1− θ)ξN,j−m:u) ,
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for a given θ ∈ [0, 1] (see [48]). Plugging expansion (45) into (19) leads to:

p̄1,N(ξN,j−m:u)

p1(ξN,j−m:u)
= 1 +

u∑
k=−m

∫
CN,jk

∇ykp1(ξN,j−m:u)T

p1(ξN,j−m:u)
(yk − ξN,jk)

dyk
VN,jk

+
1

2

u∑
k=−m

∫
CN,jk

(yk − ξN,jk)T
∇2
yk
p1(ξN,j−m:u)

p1(ξN,j−m:u)
(yk − ξN,jk)

dyk
VN,jk

+
1

2

∑
k 6=`

∫
CN,jk

∫
CN,j`

(yk − ξN,jk)T
∇2
yk,y`

p1(ξN,j−m:u)

p1(ξN,j−m:u)
(y` − ξN,j`)

dyk
VN,jk

dy`
VN,j`

+ εN,j−m:u , (46)

where

εN,j−m:u =

∫
. . .

∫
CN,j−m

×···×CN,ju

εN(y−m:u)

p1(ξN,j−m:u)

dy−m:u∏u
i=−m VN,ji

.

We now determine an estimate for this remainder term. For each y−m:u ∈ CN,j−m×· · ·×CN,ju ,

εN(y−m:u)

p1(ξN,j−m:u)
=

1

6

u∑
k,`,r=−m

d∑
h,ß̄,̄=1

(y
(h)
k − ξ

(h)
N,jk

)(y
(ß̄)
` − ξ

(ß̄)
N,j`

)(y(̄)
r − ξ(̄)

N,jr
)

× 1

p1(θy−m:u + (1− θ)ξN,j−m:u)

∂3p1

∂y
(h)
k ∂y

(ß̄)
` ∂y

(̄)
r

(θy−m:u + (1− θ)ξN,j−m:u)

× p1(θy−m:u + (1− θ)ξN,j−m:u)

p1(ξN,j−m:u)
. (47)

First, we find a bound for the last factor. To that end, we expand function z−m:u 7→ log p1(z−m:u)

at point ξN,j−m:u:

log p1(z−m:u) = log p1(ξN,j−m:u) +
u∑

k=−m
∇yk log p1(θ′z−m:u + (1− θ′)ξN,j−m:u)T (zk − ξN,jk) ,

for a given θ′ ∈ [0, 1]. From Equation (24), the following inequality holds:∣∣∣∣log
p1(z−m:u)

p1(ξN,j−m:u)

∣∣∣∣ ≤ u∑
k=−m

∥∥∇yk log p1(θ′z−m:u + (1− θ′)ξN,j−m:u)
∥∥ ‖zk − ξN,jk‖

≤ C1

u∑
k=−m

‖zk − ξN,jk‖ .

Applying the above upper bound at point z−m:u = θy−m:u + (1− θ)ξN,j−m:u and using Assump-

tion 3-3), we find ∣∣∣∣log
p1(θy−m:u + (1− θ)ξN,j−m:u)

p1(ξN,j−m:u)

∣∣∣∣ ≤ C1(m+ 1)
Cd
N1/d

,
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for each y−m:u ∈ CN,j−m × · · · × CN,ju . According to the definition of sequence m(N) (see

Equation (23)), the r.h.s. of the above equation vanishes as N tends to infinity. Consequently, the

term
p1(θy−m:u+(1−θ)ξN,j−m:u

)

p1(ξN,j−m:u
)

in Equation (47) is bounded. This result together with Assumption 4-

2) gives the following upper bound:∣∣εN,j−m:u

∣∣ ≤ cT

(
m+ 1

N1/d

)3

,

for some constant cT .

Let us now examine the dominant terms of Equation (46). Recall that ξN,j is defined as the

centroid of cell CN,j:

ξN,j =

∫
CN,j

y
dy

VN,j
.

It is straightforward to prove the following two equalities, for any j ∈ {1, . . . , N} and any

d-by-d matrix A: ∫
CN,j

(y − ξN,j)
dy

VN,j
= 0 ,∫

CN,j

(y − ξN,j)TA (y − ξN,j)
dy

VN,j
= Tr (AMN,j)V

2/d
N,j .

Plugging above identities in Equation (46) and recalling that ζN,j = 1
NVN,j

prove Lemma 2.

APPENDIX B

PROOF OF LEMMA 3

We study each term of the r.h.s. of (32). Writing Taylor-Lagrange expansions of the probability

densities and using the fact that quantization levels are centroids of the cells, we prove the

following three lemmas. Define function VN on Y by VN(y) = VN,j whenever y ∈ CN,j .
Lemma 6: For each k ∈ {−m, . . . , u}, the following equality holds true:

E0

[
∇yk log p1(ZN,−m:u)

T (Yk − ZN,k)
]

=
1

N2/d
E0

[
∇yk log p1(ZN,−m:u)

T MN(Yk)

ζN(Yk)2/d

∇ykp0(Y−m:k−1, ZN,k, Yk+1:u)

p0(Y−m:u)

]
+ ε̄N,k ,

where |ε̄N,k| ≤ c′1
N3/d for some constant c′1.
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Proof: We expand the expectation:

E0

[
∇yk log p1(ZN,−m:u)

T(Yk − ZN,k)
]

=
∑
j−m:u

∫
. . .

∫
CN,j−m

×···×CN,ju

∇yk log p1(ξN,j−m:u)T (yk − ξN,jk)p0(y−m:u) dy−m:u . (48)

where
∑

j−m:u
is a summation over all index vectors j−m:u ∈ {1, . . . , N}u+m+1.

For each jk ∈ {1, . . . , N}, we then consider the Taylor-Lagrange expansion of yk 7→ p0(y−m:u)

at point ξN,jk :

p0(y−m:u) = p0(y−m:k−1, ξN,jk , yk+1:u)

+∇ykp0(y−m:k−1, ξN,jk , yk+1:u)
T (yk − ξN,jk) + εN,k(y−m:u) , (49)

where

εN,k(y−m:u) = (yk − ξN,jk)T∇2
yk
p0(y−m:k−1, θyk + (1− θ)ξN,jk , yk+1:u) (yk − ξN,jk)

for a given θ ∈ [0, 1]. Under Assumption 4-2), from the counterparts of Equations (24), (25) for

density p0 and following the argument of Lemma 2 (see Appendix A), we can find a bound for

this remainder: For each y−m:u ∈ CN,j−m × · · · × CN,ju ,

|εN,k(y−m:u)| ≤ ‖yk − ξN,jk‖2
∥∥∇2

yk
p0(y−m:k−1, θyk + (1− θ)ξN,jk , yk+1:u)

∥∥
= ‖yk − ξN,jk‖2

∥∥∥∥∇2
yk
p0(y−m:k−1, θyk + (1− θ)ξN,jk , yk+1:u)

p0(y−m:k−1, θyk + (1− θ)ξN,jk , yk+1:u)

∥∥∥∥
× p0(y−m:k−1, θyk + (1− θ)ξN,jk , yk+1:u)

p0(y−m:u)
p0(y−m:u)

≤ c ‖yk − ξN,jk‖2 p0(y−m:u) , (50)

for some constant c.

Plugging expansion (49) into (48) leads to two dominant terms DN,1 and DN,2 and a remain-

der rN :

E0

[
∇yk log p1(ZN,−m:u)

T (Yk − ZN,k)
]

= DN,1 +DN,2 + rN .
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We successively study each of them. The first dominant term is

DN,1 =
∑
j−m:u

∫
. . .

∫
CN,j−m

×···×CN,ju

∇yk log p1(ξN,j−m:u)T(yk − ξN,jk)

× p0(y−m:k−1, ξN,jk , yk+1:u) dy−m:u

=
∑
j−m:u

∇yk log p1(ξN,j−m:u)T

∫
. . .

∫
{CN,ji

}i 6=k

(∫
CN,jk

(yk − ξN,jk)dyk

)

× p0(y−m:k−1, ξN,jk , yk+1:u) {dyi}i 6=k

= 0 ,

where {dyi}i 6=k stands for
∏u

i=−m,i 6=k dyi. The last equality holds true since we have chosen the

quantization level ξN,j to be the centroid of cell CN,j .

The second dominant term is

DN,2 =
∑
j−m:u

∫
. . .

∫
CN,j−m

×···×CN,ju

∇yk log p1(ξN,j−m:u)T(yk − ξN,jk)(yk − ξN,jk)T

×∇ykp0(y−m:k−1, ξN,jk , yk+1:u) dy−m:u

=
∑
j−m:u

∇yk log p1(ξN,j−m:u)T

∫
. . .

∫
{CN,ji

}i 6=k

(∫
CN,jk

(yk − ξN,jk)(yk − ξN,jk)Tdyk

)

×∇ykp0(y−m:k−1, ξN,jk , yk+1:u) {dyi}i 6=k

=
∑
j−m:u

∇yk log p1(ξN,j−m:u)T MN,jk V
1+2/d
N,jk

×
∫
. . .

∫
{CN,ji

}i 6=k

∇ykp0(y−m:k−1, ξN,jk , yk+1:u) {dyi}i 6=k . (51)

We now write this equality in a simple form. Obviously, under Assumption 1-2), we can write

∇ykp0(y−m:k−1, ξN,jk , yk+1:u) =
∇ykp0(y−m:k−1, ξN,jk , yk+1:u)

p0(y−m:u)
p0(y−m:u) .

Note that the above expression is independent of yk ∈ CN,j , so we can also write

∇ykp0(y−m:k−1, ξN,jk , yk+1:u) =

∫
CN,j

∇ykp0(y−m:k−1, ξN,jk , yk+1:u)

p0(y−m:u)
p0(y−m:u)

dyk
VN,j

.
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Equation (51) thus becomes

DN,2 =
∑
j−m:u

∇yk log p1(ξN,j−m:u)T MN,jk V
2/d
N,jk

×
∫
. . .

∫
{CN,ji

}

∇ykp0(y−m:k−1, ξN,jk , yk+1:u)

p0(y−m:u)
p0(y−m:u) dy−m:u

=
1

N2/d
E0

[
∇yk log p1(ZN,−m:u)

T MN(Yk)

ζN(Yk)2/d

∇ykp0(Y−m:k−1, ZN,k, Yk+1:u)

p0(Y−m:u)

]
,

where the last line comes from ζN,j = 1
NVN,j

.

We complete the proof with a bound on the remainder term:

|rN | =

∣∣∣∣∣∣
∑
j−m:u

∫
. . .

∫
CN,j−m

×···×CN,ju

∇yk log p1(ξN,j−m:u)T(yk − ξN,jk) εN,k(y−m:u) dy−m:u

∣∣∣∣∣∣
(a)

≤ C1 c

∫
. . .

∫
‖yk − ξN(yk)‖3 p0(y−m:u) dy−m:u

(b)

≤ C1 c

(
Cd
N1/d

)3

=
c′1
N3/d

,

where inequality (a) is obtained from Equations (24), (50) and (b) is a consequence of Assump-

tion 3-3).

Putting all pieces together proves Lemma 6.

Lemma 7: There exists a constant c′2 such that, for each k 6= ` ∈ {−m, . . . , u},

E0

[
(Yk − ZN,k)T∇2

yk,y`
log p1(ZN,−m:u) (Y` − ZN,`)

]
≤ c′2
N3/d

.

Proof: For each k 6= `, we expand the expectation:

E0

[
(Yk − ZN,k)T∇2

yk,y`
log p1(ZN,−m:u) (Y` − ZN,`)

]
=
∑
j−m:u

∫
. . .

∫
CN,j−m

×···×CN,ju

(yk − ξN,jk)T∇2
yk,y`

log p1(ξN,j−m:u) (y` − ξN,j`) p0(y−m:u) dy−m:u

(52)

and consider the expansion of yk 7→ p0(y−m:u) at point ξN,jk :

p0(y−m:u) = p0(y−m:k−1, ξN,jk , yk+1:u) + ε′N,k(y−m:u) , (53)

where, from the counterpart of Equation (24) for density p0 and following the argument leading

to Equation (50),
∣∣ε′N,k(y−m:u)

∣∣ ≤ c′ ‖yk − ξN,jk‖ p0(y−m:u) for some constant c′.
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Plugging expansion (53) into (52) leads to a dominant term and a remainder. The dominant

term is∑
j−m:u

∫
. . .

∫
CN,j−m

×···×CN,ju

(yk − ξN,jk)T∇2
yk,y`

log p1(ξN,j−m:u) (y` − ξN,j`)

× p0(y−m:k−1, ξN,jk , yk+1:u) dy−m:u

=
∑
j−m:u

∫
. . .

∫
{CN,ji

}i6=k

(∫
CN,jk

(yk − ξN,jk)dyk

)
∇2
yk,y`

log p1(ξN,j−m:u) (y` − ξN,j`)

× p0(y−m:k−1, ξN,jk , yk+1:u) {dyi}i 6=k

= 0 .

Using Equation (25) and Assumption 3-3), we find a bound for the remainder term:∣∣∣∣∣∣
∑
j−m:u

∫
. . .

∫
CN,j−m

×···×CN,ju

(yk − ξN,jk)T∇2
yk,y`

log p1(ξN,j−m:u) (y` − ξN,j`) ε′N,k(y−m:u) dy−m:u

∣∣∣∣∣∣
≤ C2 c

′
(

Cd
N1/d

)3

=
c′2
N3/d

. (54)

Lemma 8: For each k ∈ {−m, . . . , u},

E0

[
(Yk − ZN,k)T∇2

yk
log p1(ZN,−m:u) (Yk − ZN,k)

]
=

1

N2/d
E0

[
Tr
(
∇2
yk

log p1(ZN,−m:u)
MN(Yk)

ζN(Yk)2/d

)
p0(Y−m:k−1, ZN,k, Yk+1:u)

p0(Y−m:u)

]
+ ε̄′N,k ,

where
∣∣ε̄′N,k∣∣ ≤ c′2

N3/d .

Proof: For each k, we expand the expectation:

E0

[
(Yk − ZN,k)T∇2

yk
log p1(ZN,−m:u) (Yk − ZN,k)

]
=
∑
j−m:u

∫
. . .

∫
CN,j−m

×···×CN,ju

(yk − ξN,jk)T∇2
yk

log p1(ξN,j−m:u) (yk − ξN,jk) p0(y−m:u) dy−m:u .

(55)

Plugging expansion (53) into (55) leads to a dominant term and a remainder. The study of the

dominant term uses the same arguments as Lemma 6. The final expression comes from the
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following equality: ∫
CN,j

(y − ξN,j)TA (y − ξN,j) dy = Tr (AMN,j) V
1+2/d
N,j ,

for any d-by-d matrix A, and the definition of the specific point density ζN,j = 1
NVN,j

.

Equation (54) is also valid when k = ` i.e., for the remainder considered here. This proves

Lemma 8.

Gathering Equation (32) and Lemmas 6, 7, 8 results in

UN(u) =− 1

N2/d

u∑
k=−m

E0

[
∇yk log p1(ZN,−m:u)

T MN(Yk)

ζN(Yk)2/d

∇ykp0(Y−m:k−1, ZN,k, Yk+1:u)

p0(Y−m:u)

]

− 1

2N2/d

u∑
k=−m

E0

[
Tr
(
∇2
yk

log p1(ZN,−m:u)
MN(Yk)

ζN(Yk)2/d

)
p0(Y−m:k−1, ZN,k, Yk+1:u)

p0(Y−m:u)

]
+ ε̄N(u) ,

where |ε̄N(u)| ≤ cU
m3

N3/d for some constant cU .

Expanding ∇ykp0 and p0 once again, under Assumptions 3 and 4-2), it is straightforward to

write the dominant term in a simple form i.e., replace each ZN,k by Yk. From Equation (23),

the remainder term is a little-o of N−2/d. This proves Lemma 3.

APPENDIX C

PROOF OF LEMMA 5

Equation (38) ensures that the following series converges:

ΣN = E0 [HN,0(Y−∞:0)] +
−1∑

k=−∞
E0 [HN,k(Y−∞:0)−HN,k(Y−∞:−1)] .

Using Equation (35), the approximation of N2/d(K −KN) by series ΣN leads to the following

remainder: ∣∣N2/d(K −KN)− ΣN

∣∣ ≤ 0∑
k=−m

E0

∣∣∆(k)
N

∣∣+
−m−1∑
k=−∞

E0

∣∣Υ(k)
N

∣∣+ ε̌N , (56)

where ∆
(0)
N = HN,0(Y−m:0)−HN,0(Y−∞:0) and

∆
(k)
N = HN,k(Y−m:0)−HN,k(Y−m:−1)−HN,k(Y−∞:0) +HN,k(Y−∞:−1) (∀ k ≤ −1) ,

Υ
(k)
N = HN,k(Y−∞:0)−HN,k(Y−∞:−1) (∀ k ≤ −m− 1) ,
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and where ε̌N → 0 as N →∞. Using the triangular inequality, we obtain for each k ≤ −1:

E0

∣∣∆(k)
N

∣∣ ≤ E0 |HN,k(Y−m:0)−HN,k(Y−∞:0)|+ E0 |HN,k(Y−m:−1)−HN,k(Y−∞:−1)| .

Using (37), this leads to:

E0

∣∣∆(k)
N

∣∣ ≤ 2 chϕm−|k| .

From the triangular inequality once again,

E0

∣∣∆(k)
N

∣∣ ≤ E0 |HN,k(Y−m:0)−HN,k(Y−m:−1)|+ E0 |HN,k(Y−∞:0)−HN,k(Y−∞:−1)| .

Using (38), this leads to:

E0

∣∣∆(k)
N

∣∣ ≤ 2 chψ|k| .

After some algebra, there exists a constant c∆ such that:
−1∑

k=−m
E0

∣∣∆(k)
N

∣∣ ≤ c∆

−1∑
k=−m

ϕm−|k| ∧ ψ|k|

≤ c∆

 −1∑
k=−bm/2c

ϕm−|k| +

−bm/2c∑
k=−m

ψ|k|


≤ c∆

 ∞∑
k=dm/2e

ϕk +
∞∑

k=bm/2c
ψk


≤ c∆ T (m)

∆ ,

Where (T (m)
∆ )m≥0 is a sequence of positive numbers such that T (m)

∆ → 0 as m → ∞. The

last line of the above equation holds true under Assumption 4-4) since
∑
ϕk and

∑
ψk are

convergent series. Similarly, E0

∣∣∆(0)
N

∣∣ ≤ chϕm.

The last series in (56) can be bounded using (38):
−m−1∑
k=−∞

E0

∣∣Υ(k)
N

∣∣ ≤ ch

−m−1∑
k=−∞

ψ|k| = cΥ T (m)
Υ ,

for some constant cΥ and a given sequence (T (m)
Υ )m≥0 such that T (m)

Υ → 0 as m→∞.

Putting all pieces together, Equation (56) leads to:∣∣N2/d(K −KN)− ΣN

∣∣ ≤ chϕm + c∆ T (m)
∆ + cΥ T (m)

Υ + ε̌N .

The r.h.s. of the above inequality tends to zero as m,N →∞. This proves Lemma 5.
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